A detailed description of the binomial theorem and an application to permutation binomials over finite fields

被引:0
作者
Zhilin Zhang
Lang Tang
Ningjing Huang
机构
[1] South China Normal University,School of Mathematical Science
[2] Hunan First Normal University,Mathematics and Computational Science
[3] Liangtian Town Third Primary School,undefined
来源
Journal of Applied Mathematics and Computing | 2022年 / 68卷
关键词
Binomial theorem; Combinatorial identities; Permutation binomials; Finite fields; 05A05; 11T06; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a detailed description of the binomial theorem and obtain some new classes of combinatorial identities. As an application, we discuss a class of permutation binomials over finite fields Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}, which is of the form xμ+ν+2xμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{\mu +\nu }+2x^{\mu }$$\end{document}, where q≡1(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\equiv 1\pmod {3}$$\end{document} and (ν,q-1)=q-13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\nu , q-1)=\frac{q-1}{3}$$\end{document}.
引用
收藏
页码:177 / 198
页数:21
相关论文
共 44 条
[21]   Some permutations and complete permutation polynomials over finite fields [J].
Ongan, Pinar ;
Temur, Burcu Gulmez .
TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) :2154-2160
[22]   Enumerating permutation polynomials over finite fields by degree II [J].
Konyagin, S ;
Pappalardi, F .
FINITE FIELDS AND THEIR APPLICATIONS, 2006, 12 (01) :26-37
[23]   A Bertini type theorem for pencils over finite fields [J].
Asgarli, Shamil ;
Ghioca, Dragos .
FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
[24]   Some classes of permutation polynomials over finite fields with odd characteristic [J].
Liu, Qian ;
Sun, Yujuan ;
Zhang, WeiGuo .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2018, 29 (05) :409-431
[25]   More classes of permutation pentanomials over finite fields with even characteristic [J].
Zhang, Tongliang ;
Zheng, Lijing .
FINITE FIELDS AND THEIR APPLICATIONS, 2025, 103
[26]   Permutation polynomials and their compositional inverses over finite fields by a local method [J].
Wu, Danyao ;
Yuan, Pingzhi .
DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (02) :267-276
[27]   Some classes of permutation polynomials over finite fields with odd characteristic [J].
Qian Liu ;
Yujuan Sun ;
WeiGuo Zhang .
Applicable Algebra in Engineering, Communication and Computing, 2018, 29 :409-431
[28]   A note on inverses of cyclotomic mapping permutation polynomials over finite fields [J].
Wang, Qiang .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 :422-427
[29]   Permutation polynomials and their compositional inverses over finite fields by a local method [J].
Danyao Wu ;
Pingzhi Yuan .
Designs, Codes and Cryptography, 2024, 92 (2) :267-276
[30]   Local Permutation Polynomials of Maximum Degree Over Prime Finite Fields [J].
Gutierrez, Jaime ;
Urroz, Jorge Jimenez .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (02)