A detailed description of the binomial theorem and an application to permutation binomials over finite fields

被引:0
作者
Zhilin Zhang
Lang Tang
Ningjing Huang
机构
[1] South China Normal University,School of Mathematical Science
[2] Hunan First Normal University,Mathematics and Computational Science
[3] Liangtian Town Third Primary School,undefined
来源
Journal of Applied Mathematics and Computing | 2022年 / 68卷
关键词
Binomial theorem; Combinatorial identities; Permutation binomials; Finite fields; 05A05; 11T06; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a detailed description of the binomial theorem and obtain some new classes of combinatorial identities. As an application, we discuss a class of permutation binomials over finite fields Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}, which is of the form xμ+ν+2xμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{\mu +\nu }+2x^{\mu }$$\end{document}, where q≡1(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\equiv 1\pmod {3}$$\end{document} and (ν,q-1)=q-13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\nu , q-1)=\frac{q-1}{3}$$\end{document}.
引用
收藏
页码:177 / 198
页数:21
相关论文
共 44 条
  • [11] Cyclotomic mapping permutation polynomials over finite fields
    Wang, Qiang
    SEQUENCES, SUBSEQUENCES, AND CONSEQUENCES, 2007, 4893 : 119 - 128
  • [12] A Torelli Theorem for Curves over Finite Fields
    Bogomolov, Fedor
    Korotiaev, Mikhail
    Tschinkel, Yuri
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2010, 6 (01) : 245 - 294
  • [13] Swan-like results for binomials and trinomials over finite fields of odd characteristic
    Hanson, B.
    Panario, D.
    Thomson, D.
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 61 (03) : 273 - 283
  • [14] Swan-like results for binomials and trinomials over finite fields of odd characteristic
    B. Hanson
    D. Panario
    D. Thomson
    Designs, Codes and Cryptography, 2011, 61 : 273 - 283
  • [15] On Inverses of Permutation Polynomials of Small Degree Over Finite Fields
    Zheng, Yanbin
    Wang, Qiang
    Wei, Wenhong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (02) : 914 - 922
  • [16] Complete permutation polynomials over finite fields of odd characteristic
    Xu Guangkui
    Cao, Xiwang
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 31 : 228 - 240
  • [17] Further results on complete permutation monomials over finite fields
    Feng, Xiutao
    Lin, Dongdai
    Wang, Liping
    Wang, Qiang
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 57 : 47 - 59
  • [18] Some permutations and complete permutation polynomials over finite fields
    Ongan, Pinar
    Temur, Burcu Gulmez
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2154 - 2160
  • [19] Permutation polynomials over finite fields from a powerful lemma
    Yuan, Pingzhi
    Ding, Cunsheng
    FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (06) : 560 - 574
  • [20] Further results on a class of permutation polynomials over finite fields
    Li, Nian
    Helleseth, Tor
    Tang, Xiaohu
    FINITE FIELDS AND THEIR APPLICATIONS, 2013, 22 : 16 - 23