A detailed description of the binomial theorem and an application to permutation binomials over finite fields

被引:0
作者
Zhilin Zhang
Lang Tang
Ningjing Huang
机构
[1] South China Normal University,School of Mathematical Science
[2] Hunan First Normal University,Mathematics and Computational Science
[3] Liangtian Town Third Primary School,undefined
来源
Journal of Applied Mathematics and Computing | 2022年 / 68卷
关键词
Binomial theorem; Combinatorial identities; Permutation binomials; Finite fields; 05A05; 11T06; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a detailed description of the binomial theorem and obtain some new classes of combinatorial identities. As an application, we discuss a class of permutation binomials over finite fields Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}, which is of the form xμ+ν+2xμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{\mu +\nu }+2x^{\mu }$$\end{document}, where q≡1(mod3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\equiv 1\pmod {3}$$\end{document} and (ν,q-1)=q-13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\nu , q-1)=\frac{q-1}{3}$$\end{document}.
引用
收藏
页码:177 / 198
页数:21
相关论文
共 44 条
[1]   A detailed description of the binomial theorem and an application to permutation binomials over finite fields [J].
Zhang, Zhilin ;
Tang, Lang ;
Huang, Ningjing .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) :177-198
[2]   ON PERMUTATION BINOMIALS OVER FINITE FIELDS [J].
Ayad, Mohamed ;
Belghaba, Kacem ;
Kihel, Omar .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) :112-124
[3]   A certain generalized Lucas sequence and its application to the permutation binomials over finite fields [J].
Zhang, Zhilin ;
Li, Hongjian ;
Tian, Delu .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
[4]   Counting irreducible binomials over finite fields [J].
Heyman, Randell ;
Shparlinski, Igor E. .
FINITE FIELDS AND THEIR APPLICATIONS, 2016, 38 :1-12
[5]   Stable binomials over finite fields [J].
Fernandes, Arthur ;
Panario, Daniel ;
Reis, Lucas .
FINITE FIELDS AND THEIR APPLICATIONS, 2025, 101
[6]   Equal-degree factorization of binomials and trinomials over finite fields [J].
Singh, Manjit ;
Sehrawat, Deepak .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (02) :1647-1672
[7]   On a class of permutation trinomials over finite fields [J].
Temur, Burcu Gulmez ;
Ozkaya, Buket .
TURKISH JOURNAL OF MATHEMATICS, 2024, 48 (04) :778-792
[8]   Equal-degree factorization of binomials and trinomials over finite fields [J].
Manjit Singh .
Journal of Applied Mathematics and Computing, 2024, 70 :1647-1672
[9]   A specific type of permutation and complete permutation polynomials over finite fields [J].
Ongan, Pinar ;
Temur, Burcu Gulmez .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (04)
[10]   Some generalized permutation polynomials over finite fields [J].
Qin, Xiaoer ;
Yan, Li .
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (01) :75-87