Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview

被引:135
|
作者
Blasi P. [1 ]
机构
[1] School of Pharmacy, University of Camerino, via Gentile III da Varano, Camerino
关键词
Drug delivery systems; Long-acting injections; Microspheres; PGA; PLA; PLGA;
D O I
10.1007/s40005-019-00453-z
中图分类号
学科分类号
摘要
Background: Poly(glycolic acid), poly(lactic acid) and poly(lactic-co-glycolic acid) were approved by the United States Food and Drug Administration (FDA) in the 1970s as materials for the manufacturing of bioresorbable surgical sutures, but soon became the reference materials for the preparation of sustained release formulations, especially injectable microparticles. Since the 1986 approval of Decapeptyl® SR, the first product based on PLGA microspheres, more than 15 such products have been approved for clinical use. Area covered: This article highlights the key steps that brought to the development of injectable poly(lactic acid)/poly(lactic-co-glycolic acid) microparticles for the sustained release of active pharmaceutical ingredients. After a brief history of some pioneering works that opened the field of controlled drug delivery, the key steps that led to the development of these polymers and the approval of the first microparticle-based medicinal products are reviewed. Finally, the general characteristics of these polymers are described and the classical preparation method is explained. Expert opinion: Poly(lactic acid)/poly(lactic-co-glycolic acid) microparticles are among the most successful drug delivery systems. The recent approval of new medicinal products based on PLGA microspheres is the proof that pharmaceutical companies have continued to exploit this drug delivery technology. The possible development of generics and the continuous discovery of therapeutic peptides will hopefully further the success of microsphere technology. © 2019, The Korean Society of Pharmaceutical Sciences and Technology.
引用
收藏
页码:337 / 346
页数:9
相关论文
共 50 条
  • [31] Release mechanisms from gentamicin loaded poly(lactic-co-glycolic acid) (PLGA) microparticles
    Friess, WF
    Schlapp, M
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2002, 91 (03) : 845 - 855
  • [32] Control of Alginate Core Size in Alginate-Poly (Lactic-Co-Glycolic) Acid Microparticles
    Daniel Lio
    David Yeo
    Chenjie Xu
    Nanoscale Research Letters, 2016, 11
  • [33] Poly(lactic-co-glycolic) acid-based scaffolds for tissue engineering
    Syachina, M.
    Mironov, A.
    Nedorubova, I.
    Bukharova, T.
    Goldstein, D.
    Popov, V.
    FEBS OPEN BIO, 2021, 11 : 334 - 334
  • [34] Sorption and swelling of poly(D,L-lactic acid) and poly(lactic-co-glycolic acid) in supercritical CO2
    Pini, Ronny
    Storti, Giuseppe
    Mazzotti, Marco
    Tai, Hongyun
    Shakesheff, Kevin M.
    Howdle, Steven M.
    MACROMOLECULAR SYMPOSIA, 2007, 259 : 197 - 202
  • [35] Poly (lactic-co-glycolic acid) as a controlled release delivery device
    Tee Yong Lim
    Chye Khoon Poh
    W. Wang
    Journal of Materials Science: Materials in Medicine, 2009, 20 : 1669 - 1675
  • [36] Poly(Lactic-co-Glycolic) Acid as a Carrier for Imaging Contrast Agents
    Doiron, Amber L.
    Homan, Kimberly A.
    Emelianov, Stanislav
    Brannon-Peppas, Lisa
    PHARMACEUTICAL RESEARCH, 2009, 26 (03) : 674 - 682
  • [37] Interaction of poly(lactic-co-glycolic acid) nanoparticles at fluid interfaces
    Gyulai, Gergo
    Kiss, Eva
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2017, 500 : 9 - 19
  • [38] Multifaceted chitin/poly(lactic-co-glycolic) acid composite nanogels
    Rejinold, N. Sanoj
    Biswas, Raja
    Chellan, Gopi
    Jayakumar, R.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2014, 67 : 279 - 288
  • [39] In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges
    Yoshioka, Taiyo
    Kawazoe, Naoki
    Tateishi, Tetsuya
    Chen, Guoping
    BIOMATERIALS, 2008, 29 (24-25) : 3438 - 3443
  • [40] Emerging trends in Poly(lactic-co-glycolic) acid bionanoarchitectures and applications
    Idumah, Christopher Igwe
    CLEANER MATERIALS, 2022, 5