Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: an overview

被引:137
作者
Blasi P. [1 ]
机构
[1] School of Pharmacy, University of Camerino, via Gentile III da Varano, Camerino
关键词
Drug delivery systems; Long-acting injections; Microspheres; PGA; PLA; PLGA;
D O I
10.1007/s40005-019-00453-z
中图分类号
学科分类号
摘要
Background: Poly(glycolic acid), poly(lactic acid) and poly(lactic-co-glycolic acid) were approved by the United States Food and Drug Administration (FDA) in the 1970s as materials for the manufacturing of bioresorbable surgical sutures, but soon became the reference materials for the preparation of sustained release formulations, especially injectable microparticles. Since the 1986 approval of Decapeptyl® SR, the first product based on PLGA microspheres, more than 15 such products have been approved for clinical use. Area covered: This article highlights the key steps that brought to the development of injectable poly(lactic acid)/poly(lactic-co-glycolic acid) microparticles for the sustained release of active pharmaceutical ingredients. After a brief history of some pioneering works that opened the field of controlled drug delivery, the key steps that led to the development of these polymers and the approval of the first microparticle-based medicinal products are reviewed. Finally, the general characteristics of these polymers are described and the classical preparation method is explained. Expert opinion: Poly(lactic acid)/poly(lactic-co-glycolic acid) microparticles are among the most successful drug delivery systems. The recent approval of new medicinal products based on PLGA microspheres is the proof that pharmaceutical companies have continued to exploit this drug delivery technology. The possible development of generics and the continuous discovery of therapeutic peptides will hopefully further the success of microsphere technology. © 2019, The Korean Society of Pharmaceutical Sciences and Technology.
引用
收藏
页码:337 / 346
页数:9
相关论文
共 50 条
  • [1] Protein Instability in Poly(Lactic-co-Glycolic Acid) Microparticles
    Marco van de Weert
    Wim E. Hennink
    Wim Jiskoot
    Pharmaceutical Research, 2000, 17 : 1159 - 1167
  • [2] Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research
    Lu, Yue
    Cheng, Dongfang
    Niu, Baohua
    Wang, Xiuzhi
    Wu, Xiaxia
    Wang, Aiping
    PHARMACEUTICALS, 2023, 16 (03)
  • [3] Protein instability in poly(lactic-co-glycolic acid) microparticles
    van de Weert, M
    Hennink, WE
    Jiskoot, W
    PHARMACEUTICAL RESEARCH, 2000, 17 (10) : 1159 - 1167
  • [4] Longitudinal acoustic properties of poly(lactic acid) and poly(lactic-co-glycolic acid)
    Parker, N. G.
    Mather, M. L.
    Morgan, S. P.
    Povey, M. J. W.
    BIOMEDICAL MATERIALS, 2010, 5 (05)
  • [5] Experimental Comparative Study of the Histotoxicity of Poly(Lactic-co-Glycolic Acid) copolymer and Poly(Lactic-co-Glycolic Acid)-Poly(Isoprene) Blend
    Kim, Jung Ho
    Marques, Douglas Ramos
    Faller, Gustavo Juliani
    Collares, Marcus Vinicius
    Rodriguez, Rubens
    dos Santos, Luis Alberto
    Dias, Diego da Silva
    POLIMEROS-CIENCIA E TECNOLOGIA, 2014, 24 (05): : 529 - 535
  • [6] Biodegradable poly(lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens
    Jiang, WL
    Gupta, RK
    Deshpande, MC
    Schwendeman, SP
    ADVANCED DRUG DELIVERY REVIEWS, 2005, 57 (03) : 391 - 410
  • [7] Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles
    Elmowafy E.M.
    Tiboni M.
    Soliman M.E.
    Journal of Pharmaceutical Investigation, 2019, 49 (4) : 347 - 380
  • [8] Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery
    Pavot, Vincent
    Berthet, Morgane
    Resseguier, Julien
    Legaz, Sophie
    Handke, Nadege
    Gilbert, Sarah C.
    Paul, Stephane
    Verrier, Bernard
    NANOMEDICINE, 2014, 9 (17) : 2703 - 2718
  • [9] Poly(lactic-co-glycolic acid) as a particulate emulsifier
    Whitby, Catherine P.
    Lim, Li Hui
    Eskandar, Nasrin Ghouchi
    Simovic, Spomenka
    Prestidge, Clive A.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 375 : 142 - 147
  • [10] Stability of insulin during the erosion of poly(lactic acid) and poly(lactic-co-glycolic acid) microspheres
    Ibrahim, MA
    Ismail, A
    Fetouh, MI
    Göpferich, A
    JOURNAL OF CONTROLLED RELEASE, 2005, 106 (03) : 241 - 252