On a class of groups with given cofactors of maximal subgroups

被引:0
|
作者
L. P. Avdashkova
S. F. Kamornikov
机构
[1] Belarussian Cooperative University,
[2] Gomel Branch of International Institute of Labor and Social Relations,undefined
来源
Mathematical Notes | 2010年 / 87卷
关键词
maximal subgroup; cofactor; finite solvable group; Schunk class; homomorph; formation; primitive group; non-Frattini chief factor;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is devoted to the solution of the general problem of describing finite solvable groups all of whose cofactors of maximal subgroups belong to a given class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{X} $$\end{document} of groups. The cases in which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{X} $$\end{document} is a homomorph, a Schunk class, and a formation are treated separately. The approach suggested here is related to the construction of a local Schunk class defined by using a constant group function.
引用
收藏
页码:601 / 607
页数:6
相关论文
共 50 条
  • [1] On a class of groups with given cofactors of maximal subgroups
    Avdashkova, L. P.
    Kamornikov, S. F.
    MATHEMATICAL NOTES, 2010, 87 (5-6) : 601 - 607
  • [2] Finite groups with decomposable cofactors of maximal subgroups
    Lemeshev, I. V.
    Monakhov, V. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (04): : 181 - 188
  • [3] On finite groups with given maximal subgroups
    Monakhov, V. S.
    Tyutyanov, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (03) : 451 - 456
  • [4] On finite groups with given maximal subgroups
    V. S. Monakhov
    V. N. Tyutyanov
    Siberian Mathematical Journal, 2014, 55 : 451 - 456
  • [5] Finite groups with given non-nilpotent maximal subgroups of prime index
    Yi, Xiaolan
    Jiang, Shiyang
    Kamornikov, S. F.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (05)
  • [6] Bounds on the Number of Maximal Subgroups of Finite Groups
    Adolfo Ballester-Bolinches
    Ramón Esteban-Romero
    Paz Jiménez-Seral
    Results in Mathematics, 2023, 78
  • [7] ON MAXIMAL SUBGROUPS OF NONSOLVABLE GROUPS
    Dong, S.
    Miao, L.
    Zhang, J.
    Zhao, J.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (03) : 476 - 484
  • [8] Bounds on the Number of Maximal Subgroups of Finite Groups
    Ballester-Bolinches, Adolfo
    Esteban-Romero, Ramon
    Jimenez-Seral, Paz
    RESULTS IN MATHEMATICS, 2023, 78 (01)
  • [9] On Maximal Subgroups of Nonsolvable Groups
    S. Dong
    L. Miao
    J. Zhang
    J. Zhao
    Siberian Mathematical Journal, 2022, 63 : 476 - 484
  • [10] Maximal Subgroups in the Classical Groups Normalizing Solvable Subgroups
    Yang, Yu Cheng
    Li, Shang Zhi
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (05) : 740 - 752