Parity-violating neutron spin rotation in hydrogen and deuterium

被引:0
|
作者
H. W. Grießhammer
M. R. Schindler
R. P. Springer
机构
[1] The George Washington University,Institute for Nuclear Studies, Department of Physics
[2] University of South Carolina,Department of Physics and Astronomy
[3] Duke University,Department of Physics
来源
关键词
Partial Wave; Power Counting; Wave Function Renormalization; Triton Binding Energy; Neutron Spin Rotation;
D O I
暂无
中图分类号
学科分类号
摘要
We calculate the (parity-violating) spin-rotation angle of a polarized neutron beam through hydrogen and deuterium targets, using pionless effective field theory up to next-to-leading order. Our result is part of a program to obtain the five leading independent low-energy parameters that characterize hadronic parity violation from few-body observables in one systematic and consistent framework. The two spin-rotation angles provide independent constraints on these parameters. Our result for np spin rotation is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1} {\rho }\frac{{d\varphi _{PV}^{np} }} {{dl}} = \left[ {4.5 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {2g^{\left( {^3 S_1 - ^3 P_1 } \right)} + g^{\left( {^3 S_1 - ^3 P_1 } \right)} } \right) - \left[ {18.5 \pm 1.9} \right] rad MeV^{ - \frac{1} {2}} \left( {g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 2} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$$\end{document}, while for nd spin rotation we obtain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1} {\rho }\frac{{d\varphi _{PV}^{nd} }} {{dl}} = \left[ {8.0 \pm 0.8} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^1 P_1 } \right)} + \left[ {17.0 \pm 1.7} \right] rad MeV^{ - \frac{1} {2}} g^{\left( {^3 S_1 - ^3 P_1 } \right)} + \left[ {2.3 \pm 0.5} \right] rad MeV^{ - \frac{1} {2}} \left( {3g_{\left( {\Delta {\rm I} = 0} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} - 2g_{\left( {\Delta {\rm I} = 1} \right)}^{\left( {^1 S_0 - ^3 P_0 } \right)} } \right)$$\end{document}, where the g(X-Y), in units of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$MeV^{ - \frac{3} {2}}$$\end{document}, are the presently unknown parameters in the leading-order parity-violating Lagrangian. Using naıve dimensional analysis to estimate the typical size of the couplings, we expect the signal for standard target densities to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| {\frac{{d\varphi _{PV} }} {{dl}}} \right| \approx \left[ {10^{ - 7} \ldots 10^{ - 6} } \right]\frac{{rad}} {m}$$\end{document} for both hydrogen and deuterium targets. We find no indication that the nd observable is enhanced compared to the np one. All results are properly renormalized. An estimate of the numerical and systematic uncertainties of our calculations indicates excellent convergence. An appendix contains the relevant partial-wave projectors of the three-nucleon system.
引用
收藏
相关论文
共 50 条
  • [1] Parity-violating neutron spin rotation in hydrogen and deuterium
    Griesshammer, H. W.
    Schindler, M. R.
    Springer, R. P.
    EUROPEAN PHYSICAL JOURNAL A, 2012, 48 (01):
  • [2] Parity-violating neutron spin rotation in 4He
    Lazauskas, Rimantas
    Song, Young-Ho
    PHYSICAL REVIEW C, 2019, 99 (05)
  • [3] Parity-violating neutron spin rotation in a liquid parahydrogen target
    Markoff, DM
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2005, 110 (03) : 209 - 213
  • [4] Measurement of the parity-violating neutron spin rotation in 4He
    Bass, CD
    Dawkins, JM
    Luo, D
    Micherdzinska, A
    Sarsour, M
    Snow, WM
    Mumm, HP
    Nico, JS
    Huffman, PR
    Markoff, DM
    Heckel, BR
    Swanson, HE
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 2005, 110 (03) : 205 - 208
  • [5] Proposed measurement of the parity-violating neutron spin rotation in 4He
    Micherdzinska, A. M.
    Bass, C. D.
    Crawford, B. E.
    Dawkins, J. M.
    Findley, T. D.
    Heckel, B. R.
    Horton, J. C.
    Huffman, P. R.
    Luo, D.
    Markoff, D. M.
    Mumm, H. P.
    Nico, J. S.
    Sarsour, M.
    Snow, W. M.
    Swanson, H. E.
    PARTICLES AND NUCLEI, 2006, 842 : 799 - 801
  • [6] Upper bound on parity-violating neutron spin rotation in 4He
    Snow, W. M.
    Bass, C. D.
    Bass, T. D.
    Crawford, B. E.
    Gan, K.
    Heckel, B. R.
    Luo, D.
    Markoff, D. M.
    Micherdzinska, A. M.
    Mumm, H. P.
    Nico, J. S.
    Opper, A. K.
    Sarsour, M.
    Sharapov, E. I.
    Swanson, H. E.
    Walbridge, S. B.
    Zhumabekova, V.
    PHYSICAL REVIEW C, 2011, 83 (02):
  • [7] Measurement of parity-violating neutron spin rotation in Pb-207 and natural Pb
    Bolotsky, VP
    Ermakov, ON
    Golub, R
    Karpikhin, IL
    Krupchitsky, PA
    Lamoreaux, S
    PHYSICS OF ATOMIC NUCLEI, 1996, 59 (10) : 1808 - 1810
  • [8] THE PARITY VIOLATING ROTATION OF THE NEUTRON SPIN IN HELIUM
    DMITRIEV, VF
    FLAMBAUM, VV
    SUSHKOV, OP
    TELITSIN, VB
    PHYSICS LETTERS B, 1983, 125 (01) : 1 - 4
  • [9] A relativistic relationship between parity-violating nuclear spin-rotation tensors and parity-violating NMR shielding tensors
    Aucar, I. Agustin
    Colombo Jofre, Mariano T. T.
    Aucar, Gustavo A. A.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (09):
  • [10] Relativistic study of parity-violating nuclear spin-rotation tensors
    Agustin Aucar, Ignacio
    Borschevsky, Anastasia
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (13):