On k-Circulant Matrices Involving the Pell Numbers

被引:0
作者
Biljana Radičić
机构
[1] Singidunum University,
来源
Results in Mathematics | 2019年 / 74卷
关键词
-circulant matrix; Pell numbers; eigenvalues; Euclidean norm; spectral norm; Primary: 15B05; Secondary: 11B39; 15A18; 15A60;
D O I
暂无
中图分类号
学科分类号
摘要
Let k be a nonzero complex number. In this paper, we consider a k-circulant matrix whose first row is (P1,P2,⋯,Pn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{1},P_{2},\dots ,P_{n})$$\end{document}, where Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}$$\end{document} is the nth Pell number, and obtain the formulae for the eigenvalues of such matrix improving the result which can be obtained from the result of Theorem 7 (Yazlik and Taskara in J Inequal Appl 2013:394, 2013). The obtained formulae for the eigenvalues of a k-circulant matrix involving the Pell numbers show that the result of Theorem 6 (Jiang et al. in WSEAS Trans Math 12(3):341–351, 2013) [i.e. Theorem 8 (Yazlik and Taskara in J Inequal Appl 2013:394, 2013)] is not always applicable. The Euclidean norm of such matrix is determined. The upper and lower bounds for the spectral norm of a k-circulant matrix whose first row is (P1-1,P2-1,⋯,Pn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{1}^{-1},P_{2}^{-1},\dots ,P_{n}^{-1})$$\end{document} are also investigated. The obtained results are illustrated by examples.
引用
收藏
相关论文
共 53 条
[11]  
Bueno ACF(2013)Matrix generators of Pell sequences WSEAS Trans. Math. 12 472-481
[12]  
Bueno ACF(2011)On the determinants and inverses of skew circulant and skew left circulant matrices with Fibonacci and Lucas Numbers SAÜ. Fen Bilimleri Dergisi 15 151-155
[13]  
Cline RE(2010)Some sums formulae for products of terms of Pell, Pell–Lucas and modified Pell sequences SAÜ. Fen Bilimleri Dergisi 14 141-145
[14]  
Plemmons RJ(1971)On some relationships among Pell, Pell–Lucas and modified Pell sequences Fibonacci Q. 9 245-252
[15]  
Worm G(1990)Pell identities Proc. Symp. Appl. Math. 40 87-169
[16]  
Dasdemir A(2013)The Hadamard product WSEAS Trans. Math. 12 341-351
[17]  
Ercolano J(2007)On the explicit determinants and singularities of Hacet. J. Math. Stat. 36 133-142
[18]  
Gao Y(2008)-circulant and left Int. J. Inf. Syst. Sci. 4 160-177
[19]  
Jiang Z(2012)-circulant matrices with some famous numbers Int. J. Math. Sci. Comput. 2 20-22
[20]  
Gong Y(2013)Circulant, negacyclic and semicirculant matrices with the modified Pell, Jacobsthal and Jacobsthal–Lucas numbers Sci. Magna 9 31-35