On k-Circulant Matrices Involving the Pell Numbers

被引:0
作者
Biljana Radičić
机构
[1] Singidunum University,
来源
Results in Mathematics | 2019年 / 74卷
关键词
-circulant matrix; Pell numbers; eigenvalues; Euclidean norm; spectral norm; Primary: 15B05; Secondary: 11B39; 15A18; 15A60;
D O I
暂无
中图分类号
学科分类号
摘要
Let k be a nonzero complex number. In this paper, we consider a k-circulant matrix whose first row is (P1,P2,⋯,Pn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{1},P_{2},\dots ,P_{n})$$\end{document}, where Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{n}$$\end{document} is the nth Pell number, and obtain the formulae for the eigenvalues of such matrix improving the result which can be obtained from the result of Theorem 7 (Yazlik and Taskara in J Inequal Appl 2013:394, 2013). The obtained formulae for the eigenvalues of a k-circulant matrix involving the Pell numbers show that the result of Theorem 6 (Jiang et al. in WSEAS Trans Math 12(3):341–351, 2013) [i.e. Theorem 8 (Yazlik and Taskara in J Inequal Appl 2013:394, 2013)] is not always applicable. The Euclidean norm of such matrix is determined. The upper and lower bounds for the spectral norm of a k-circulant matrix whose first row is (P1-1,P2-1,⋯,Pn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_{1}^{-1},P_{2}^{-1},\dots ,P_{n}^{-1})$$\end{document} are also investigated. The obtained results are illustrated by examples.
引用
收藏
相关论文
共 53 条
  • [1] Bahsi M(2010)On the circulant matrices with arithmetic sequence Int. J. Contemp. Math. Sci. 5 1213-1222
  • [2] Solak S(2014)On the norms of J. Math. Inequal. 8 693-705
  • [3] Bahsi M(2012)-circulant matrices with the hyper-Fibonacci and Lucas numbers Appl. Math. Comput. 219 544-551
  • [4] Solak S(2014)Determinants and inverses of circulant matrices with Jacobsthal and Jacobsthal–Lucas numbers Math. Sci. Appl. E-Notes 2 67-75
  • [5] Bozkurt D(2012)The determinants of circulant and skew circulant matrices with Tribonacci numbers Int. J. Appl. Math. Res. 1 593-603
  • [6] Tam T-Y(2012)Right circulant matrices with geometric progression Int. J. Math. Sci. Comput. 2 8-9
  • [7] Bozkurt D(2013)Right circulant matrices with Fibonacci sequence Int. J. Adv. Math. Sci. 1 87-90
  • [8] da Fonseca CM(1974)Right circulant matrices with Jacobsthal sequence Linear Algebra Appl. 8 25-33
  • [9] Yilmaz F(2011)Generalized inverses of certain Toeplitz matrices Appl. Math. Sci. 5 3173-3181
  • [10] Bueno ACF(1979)On the Pell, Pell–Lucas and modified Pell numbers by matrix method Fibonacci Q. 17 71-77