Nonlinear Beltrami equation and asymptotics of its solution

被引:0
作者
Salimov R. [1 ]
Stefanchuk M. [1 ]
机构
[1] Institute of Mathematics of the NAS of Ukraine, Kyiv
关键词
Beltrami equation; Ikoma–Schwarz Lemma; length-area method; nonlinear Beltrami equation; nonlinear Cauchy–Riemann system; Schwarz Lemma;
D O I
10.1007/s10958-022-06010-8
中图分类号
学科分类号
摘要
We continue to study regular homeomorphic solutions to the nonlinear Beltrami equation introduced in [24]. Estimates of the Schwarz Lemma type have been obtained using the length-area method. © 2022, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:441 / 454
页数:13
相关论文
共 41 条
  • [31] Nonlinear Beltrami operators, Schauder estimates and bounds for the Jacobian
    Astala, Karl
    Clop, Albert
    Faraco, Daniel
    Jaaskelainen, Jarmo
    Koski, Aleksis
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (06): : 1543 - 1559
  • [32] Neumann boundary value problem for the Beltrami equation in a ring domain
    Gencturk, Ilker
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (05) : 1573 - 1584
  • [33] ON CONTINUOUS SOLUTIONS OF THE MODEL HOMOGENEOUS BELTRAMI EQUATION WITH A POLAR SINGULARITY
    Kusherbayeva, U. R.
    Abduakhitova, G. E.
    Assadi, A.
    [J]. JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2020, 105 (01): : 10 - 18
  • [34] Convergence of a numerical solver for an a"e-linear Beltrami equation
    Peramaki, Allan
    [J]. BIT NUMERICAL MATHEMATICS, 2012, 52 (01) : 155 - 178
  • [35] Exact Solutions to the Beltrami Equation with a Non-constant α(x)
    Bogoyavlenskij, Oleg
    Peng, Yuyang
    [J]. REGULAR & CHAOTIC DYNAMICS, 2021, 26 (06) : 692 - 699
  • [36] Representations of the "second kind" for the hardy classes of solutions to the Beltrami equation
    Klimentov, S. B.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (02) : 262 - 275
  • [37] Representations of the “second kind” for the hardy classes of solutions to the Beltrami equation
    S. B. Klimentov
    [J]. Siberian Mathematical Journal, 2014, 55 : 262 - 275
  • [38] The Hilbert boundary value problem for Beltrami equation in Clifford analysis
    Si Zhongwei
    Liang Lina
    Ai Zhenghai
    Jiang Zhihua
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 343 - 347
  • [39] REGULARITY OF THE BELTRAMI EQUATION AND 1-QUASICONFORMAL EMBEDDINGS OF SURFACES IN R-3
    Yang, Shanshuang
    [J]. CONFORMAL GEOMETRY AND DYNAMICS, 2009, 13 : 232 - 246
  • [40] On Beltrami!equations in Clifford analysis and its quasi-conformal solutions
    Cerejeiras, P
    Kähler, U
    [J]. CLIFFORD ANALYSIS AND ITS APPLICATIONS, 2001, 25 : 49 - 58