Nonlinear Beltrami equation and asymptotics of its solution

被引:0
|
作者
Salimov R. [1 ]
Stefanchuk M. [1 ]
机构
[1] Institute of Mathematics of the NAS of Ukraine, Kyiv
关键词
Beltrami equation; Ikoma–Schwarz Lemma; length-area method; nonlinear Beltrami equation; nonlinear Cauchy–Riemann system; Schwarz Lemma;
D O I
10.1007/s10958-022-06010-8
中图分类号
学科分类号
摘要
We continue to study regular homeomorphic solutions to the nonlinear Beltrami equation introduced in [24]. Estimates of the Schwarz Lemma type have been obtained using the length-area method. © 2022, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:441 / 454
页数:13
相关论文
共 41 条
  • [1] Nonlinear Beltrami equation
    Golberg, Anatoly
    Salimov, Ruslan
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2020, 65 (01) : 6 - 21
  • [2] Nonlinear Beltrami equation: lower estimates of Schwarz lemma's type
    Petkov, Igor
    Salimov, Ruslan
    Stefanchuk, Mariia
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (03): : 533 - 543
  • [3] On numerical algorithms for the solution of a Beltrami equation
    Gaidashev, Denis
    Khmelev, Dmitry
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) : 2238 - 2253
  • [4] On the local properties of solutions of the nonlinear Beltrami equation
    Salimov R.R.
    Stefanchuk M.V.
    Journal of Mathematical Sciences, 2020, 248 (2) : 203 - 216
  • [5] Finite Lipschitzness of regular solutions to nonlinear Beltrami equation
    Salimov, R.
    Stefanchuk, M.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (06) : 913 - 923
  • [6] NUMERICAL SOLUTION OF THE R-LINEAR BELTRAMI EQUATION
    Huhtanen, Marko
    Peramaki, Allan
    MATHEMATICS OF COMPUTATION, 2012, 81 (277) : 387 - 397
  • [7] The Beltrami Equation
    Iwaniec, Tadeusz
    Martin, Gaven
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 191 (893) : 1 - +
  • [8] Numerical Solution of the Beltrami Equation Via a Purely Linear System
    Michael Porter, R.
    Shimauchi, Hirokazu
    CONSTRUCTIVE APPROXIMATION, 2016, 43 (03) : 371 - 407
  • [9] Numerical Solution of the Beltrami Equation Via a Purely Linear System
    R. Michael Porter
    Hirokazu Shimauchi
    Constructive Approximation, 2016, 43 : 371 - 407
  • [10] On the theory of the Beltrami equation
    Ryazanov V.
    Srebro U.
    Yakubov E.
    Ukrainian Mathematical Journal, 2006, 58 (11) : 1786 - 1798