A multilevel Monte Carlo finite element method for the stochastic Cahn–Hilliard–Cook equation

被引:1
|
作者
Amirreza Khodadadian
Maryam Parvizi
Mostafa Abbaszadeh
Mehdi Dehghan
Clemens Heitzinger
机构
[1] Leibniz University of Hannover,Institute of Applied Mathematics
[2] Vienna University of Technology (TU Wien),Institute for Analysis and Scientific Computing
[3] Amirkabir University of Technology,Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences
[4] Arizona State University,School of Mathematical and Statistical Sciences
来源
Computational Mechanics | 2019年 / 64卷
关键词
Multilevel Monte Carlo; Finite element; Cahn–Hilliard–Cook equation; Euler–Maruyama method; Time discretization; 35R60; 60H15; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we employ the multilevel Monte Carlo finite element method to solve the stochastic Cahn–Hilliard–Cook equation. The Ciarlet–Raviart mixed finite element method is applied to solve the fourth-order equation. In order to estimate the mild solution, we use finite elements for space discretization and the semi-implicit Euler–Maruyama method in time. For the stochastic scheme, we use the multilevel method to decrease the computational cost (compared to the Monte Carlo method). We implement the method to solve three specific numerical examples (both two- and three dimensional) and study the effect of different noise measures.
引用
收藏
页码:937 / 949
页数:12
相关论文
共 50 条
  • [1] A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation
    Khodadadian, Amirreza
    Parvizi, Maryam
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    Heitzinger, Clemens
    COMPUTATIONAL MECHANICS, 2019, 64 (04) : 937 - 949
  • [2] Conforming finite element methods for the stochastic Cahn-Hilliard-Cook equation
    Chai, Shimin
    Cao, Yanzhao
    Zou, Yongkui
    Zhao, Wenju
    APPLIED NUMERICAL MATHEMATICS, 2018, 124 : 44 - 56
  • [3] FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD-COOK EQUATION
    Kovacs, Mihaly
    Larsson, Stig
    Mesforush, Ali
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (06) : 2407 - 2429
  • [4] Evolving surface finite element method for the Cahn-Hilliard equation
    Elliott, Charles M.
    Ranner, Thomas
    NUMERISCHE MATHEMATIK, 2015, 129 (03) : 483 - 534
  • [5] FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD-COOK EQUATION (vol 49, pg 2407, 2011)
    Kovacs, Mihaly
    Larsson, Stig
    Mesforush, Ali
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2594 - 2597
  • [6] A multigrid finite element solver for the Cahn-Hilliard equation
    Kay, D
    Welford, R
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (01) : 288 - 304
  • [7] STRONG CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF THE STOCHASTIC CAHN-HILLIARD EQUATION
    Furihata, Daisuke
    Kovacs, Mihaly
    Larsson, Stig
    Lindgren, Fredrik
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (02) : 708 - 731
  • [8] A fully discrete evolving surface finite element method for the Cahn-Hilliard equation with a regular potential
    Elliott, Charles M.
    Sales, Thomas
    NUMERISCHE MATHEMATIK, 2025, : 663 - 715
  • [9] ERROR-ESTIMATES WITH SMOOTH AND NONSMOOTH DATA FOR A FINITE-ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    LARSSON, S
    MATHEMATICS OF COMPUTATION, 1992, 58 (198) : 603 - 630
  • [10] A massively parallel implementation of multilevel Monte Carlo for finite element models
    Badia, Santiago
    Hampton, Jerrad
    Principe, Javier
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 213 : 18 - 39