Relationship between current response and time in ion transport problem including diffusion and convection. 1. An analytical approach

被引:0
作者
Alemdar Hasanov
Şafak Hasanoglu
机构
[1] Kocaeli University,Applied Mathematical Sciences Research Center
[2] Kocaeli University,Chemical
来源
Journal of Mathematical Chemistry | 2007年 / 42卷
关键词
ion transport; parabolic problem; current response; Gottrellian; 35K15; 76R05; 80A30;
D O I
暂无
中图分类号
学科分类号
摘要
The mathematical models of the ion transport problem in a potential field are anayzed. Ion transport is regarded as the superposition of diffusion and convection. In the case of pure diffusion model the classical Gottrell’s result is studied for a constant as well as for the time dependent Dirichlet data at the electrode. Comparative analysis of the current response \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal I}_{\rm D}={\mathcal I}_{\rm D}(t)$$\end{document} and the classical Gottrellian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal I}_{\rm G}={\mathcal I}_{\rm G}(t)$$\end{document} is given on the obtained explicit formulas. The approach is extended to find out the current response \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal I}_c={\mathcal I}_c(t)$$\end{document} corresponding to the diffusion-convection model. The relationship between the current response \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal I}_c={\mathcal I}_c(t)$$\end{document} and Gottrellian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal I}_{\rm G}={\mathcal I}_{\rm G}(t)$$\end{document} is obtained in explicit form. This relationship permits one to compare pure diffusion and diffusion-convection models, including asymptotic behaviour of current response and an influence of the convection coefficient. The theoretical result are illustrated by numerical examples.
引用
收藏
页码:741 / 751
页数:10
相关论文
共 24 条
[1]  
Cohn S.(1999)undefined Math. Meth. Models Appl. Sci. 9 455-undefined
[2]  
Pfabe K.(1992)undefined J. Phys. Chem. 114 3323-undefined
[3]  
Redepenning J.(1993)undefined J. Phys. Chem. 97 6444-undefined
[4]  
Blauch D.N.(1989)undefined J. Phys. Chem. 93 6212-undefined
[5]  
Saveant J.-M.(1993)undefined J. Electroanal. Chem. 362 33-undefined
[6]  
Blauch D.N.(1993)undefined J. Electroanal. Chem. 344 45-undefined
[7]  
Saveant J.-M.(1992)undefined J. Electroanal. Chem. 341 11-undefined
[8]  
Buck R.P.(1980)undefined J. Electrochem. Soc. 127 247-undefined
[9]  
Buck R.P.(1980)undefined J. Electrochem. Soc. 127 249-undefined
[10]  
Madras M.B.(1998)undefined Math. Meth. Appl. Sci. 21 1195-undefined