A Neural Network for Moore—Penrose Inverse of Time-Varying Complex-Valued Matrices

被引:0
|
作者
Yiyuan Chai
Haojin Li
Defeng Qiao
Sitian Qin
Jiqiang Feng
机构
[1] Shenzhen University,Shenzhen Key Laboratory of Advanced Machine Learning and Application, College of Mathematics and Statistics
[2] Harbin Institute of Technology,Department of Mathematics
关键词
Zhang neural network; Moore—Penrose inverse; Finite-time convergence; Noise suppression;
D O I
暂无
中图分类号
学科分类号
摘要
The Moore—Penrose inverse of a matrix plays a very important role in practical applications. In general, it is not easy to immediately solve the Moore—Penrose inverse of a matrix, especially for solving the Moore—Penrose inverse of a complex-valued matrix in time-varying situations. To solve this problem conveniently, in this paper, a novel Zhang neural network (ZNN) with time-varying parameter that accelerates convergence is proposed, which can solve Moore—Penrose inverse of a matrix over complex field in real time. Analysis results show that the state solutions of the proposed model can achieve super convergence in finite time with weighted sign-bi-power activation function (WSBP) and the upper bound of the convergence time is calculated. A related noise-tolerance model which possesses finite-time convergence property is proved to be more efficient in noise suppression. At last, numerical simulation illustrates the performance of the proposed model as well.
引用
收藏
页码:663 / 671
页数:8
相关论文
共 50 条
  • [41] Global Asymptotic Stability for Complex-Valued Neural Networks with Time-Varying Delays via New Lyapunov Functionals and Complex-Valued Inequalities
    Zhengqiu Zhang
    Dangli Hao
    Neural Processing Letters, 2018, 48 : 995 - 1017
  • [42] Efficient Predefined-Time Adaptive Neural Networks for Computing Time-Varying Tensor Moore-Penrose Inverse
    Qi, Zhaohui
    Ning, Yingqiang
    Xiao, Lin
    Wang, Zidong
    He, Yongjun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (02) : 3659 - 3670
  • [43] Finite-time Convergent Complex-Valued Neural Networks for the Time-varying Complex Linear Matrix Equations
    Wang, Xuezhong
    Liang, Lu
    Che, Maolin
    ENGINEERING LETTERS, 2018, 26 (04)
  • [44] A complex-valued time varying zeroing neural network model for synchronization of complex chaotic systems
    Jin, Jie
    Fang, Jing
    Chen, Chaoyang
    Li, Zhijing
    Yu, Fei
    NONLINEAR DYNAMICS, 2025, 113 (06) : 5471 - 5491
  • [45] Existence of Periodic Solutions for the Discrete-Time Counterpart of a Complex-Valued Hopfield Neural Network with Time-Varying Delays and Impulses
    Covachev, Valery
    Covacheva, Zlatinka
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [46] Global Exponential Stability of Discrete-Time Complex-Valued Neural Networks with Time-Varying Delay
    Zhao, Zhenjiang
    Song, Qiankun
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER ENGINEERING AND ELECTRONICS (ICECEE 2015), 2015, 24 : 840 - 845
  • [47] Dissipativity and passivity analysis for discrete-time complex-valued neural networks with time-varying delay
    Nagamani, G.
    Ramasamy, S.
    COGENT MATHEMATICS, 2015, 2
  • [48] Inverse-Free Hybrid Spatial-Temporal Derivative Neural Network for Time-Varying Matrix Moore-Penrose Inverse and Its Circuit Schematic
    Zhang, Bing
    Zheng, Yuhua
    Li, Shuai
    Chen, Xinglong
    Mao, Yao
    Pham, Duc Truong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2025, 72 (03) : 499 - 503
  • [49] Stabilization of complex-valued neural networks with time-varying delays via linear feedback control
    Zhao, Zhenjiang
    Song, Qiankun
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER ENGINEERING AND ELECTRONICS (ICECEE 2015), 2015, 24 : 804 - 809
  • [50] Further analysis of global μ-stability of complex-valued neural networks with unbounded time-varying delays
    Velmurugan, G.
    Rakkiyappan, R.
    Cao, Jinde
    NEURAL NETWORKS, 2015, 67 : 14 - 27