H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} Model Reduction for 2-D Discrete Markovian Jump Systems

被引:0
作者
Khalid Badie
Mohammed Alfidi
Zakaria Chalh
机构
[1] Sidi Mohamed Ben Abdellah University,Engineering, Systems and Applications Laboratory, National School of Applied Sciences
关键词
2-D systems; Markovian jump; Model reduction; performance; Linear matrix inequalities;
D O I
10.1007/s40313-020-00662-0
中图分类号
学科分类号
摘要
This paper is concerned with the problem of H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} model reduction for two-dimensional (2-D) discrete Markovian jump systems. The mathematical model of 2-D Markovian jump systems is described by the Fornasini–Marchesini (F–M) second model. Our attention is focused on the design of a 2-D reduced-order model, which ensures the model error system to be stochastically stable and has a prescribed H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} performance index. By using the Lyapunov functional approach and introducing some zero equations, a new condition for H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} performance analysis of model error system is developed. Based on this condition, the desired reduced-order model parameters can be obtained by solving a set of linear matrix inequalities. Two examples are presented to show the effectiveness of the proposed method.
引用
收藏
页码:18 / 29
页数:11
相关论文
共 50 条