On the Euler characteristic of Kronecker moduli spaces

被引:0
作者
Thorsten Weist
机构
[1] Bergische Universität Wuppertal,
来源
Journal of Algebraic Combinatorics | 2013年 / 38卷
关键词
Quiver moduli; Localization; Euler characteristic; Exponential growth;
D O I
暂无
中图分类号
学科分类号
摘要
Combining the MPS degeneration formula for the Poincaré polynomial of moduli spaces of stable quiver representations and localization theory, it turns that the determination of the Euler characteristic of these moduli spaces reduces to a combinatorial problem of counting certain trees. We use this fact in order to obtain an upper bound for the Euler characteristic in the case of the Kronecker quiver. We also derive a formula for the Euler characteristic of some of the moduli spaces appearing in the MPS degeneration formula.
引用
收藏
页码:567 / 583
页数:16
相关论文
共 8 条
[1]  
Bernstein J.(1973)Coxeter functors and Gabriel’s theorem Russ. Math. Surv. 28 17-32
[2]  
Gelfand I.M.(1982)Infinite root systems, representations of graphs and invariant theory II J. Algebra 78 141-162
[3]  
Ponomarev V.A.(1994)Moduli of representations of finite-dimensional algebras Q. J. Math. Oxf. Ser. 45 515-530
[4]  
Kac V.(1992)General representations of quivers Proc. Lond. Math. Soc. 65 46-64
[5]  
King A.(1962)The number of trees with nodes of alternate parity Proc. Camb. Philos. Soc. 58 12-16
[6]  
Schofield A.(2010)Spanning trees and orientations of graphs J. Comb. 1 101-111
[7]  
Scoins H.I.(undefined)undefined undefined undefined undefined-undefined
[8]  
Thomassen C.(undefined)undefined undefined undefined undefined-undefined