An arbitrary band structure construction of totally nonnegative matrices with prescribed eigenvalues

被引:0
作者
Kanae Akaiwa
Yoshimasa Nakamura
Masashi Iwasaki
Akira Yoshida
Koichi Kondo
机构
[1] Kyoto University,Graduate School of Informatics
[2] Kyoto Prefectural University,Department of Informatics and Environmental Science
[3] Doshisha University,Graduate School of Science and Engineering
[4] Kyoto Sangyo University,Faculty of Computer Science and Engineering
来源
Numerical Algorithms | 2017年 / 75卷
关键词
Extended discrete hungry Toda equation; Finite-step construction; Inverse eigenvalue problem; Totally nonnegative; 65F18; 15A48; 37N30;
D O I
暂无
中图分类号
学科分类号
摘要
The construction of totally nonnegative (TN) matrices with prescribed eigenvalues is an important topic in real-valued nonnegative inverse eigenvalue problems. TN matrices are square matrices whose minors are all nonnegative. Our previous paper (Numer. Algor. 70, 469–484, ??2015) presented a finite-step construction of TN matrices limited to upper or lower Hessenberg forms with prescribed eigenvalues, based on the discrete hungry Toda (dhToda) equation which is derived from the study of integrable systems. Building on our previous paper, we produce the construction of banded TN matrices with an arbitrary number of diagonals in both lower and upper triangular parts and prescribed eigenvalues, involving upper Hessenberg, lower Hessenberg, and dense TN matrices with prescribed eigenvalues. We first prepare an infinite sequence associated with distinct eigenvalues λ1,λ2,…,λm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1},\lambda _{2},\dots ,\lambda _{m}$\end{document} and two integers M and N which determine the upper and lower bandwidths of m-by-m banded matrices, respectively. Both M and N play a key role for achieving our purpose. The study follows similar lines to our previous paper, but is complicated by the introduction of N. We next consider extended Hankel determinants and extended Hadamard polynomials involving elements of the infinite sequence and then derive their relationships. These relationships help us understand banded TN matrices with eigenvalues λ1,λ2,…,λm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1},\lambda _{2},\dots ,\lambda _{m}$\end{document} from the viewpoint of an extension of the dhToda equation. Finally, we propose a finite-step procedure for constructing TN matrices with an arbitrary upper and lower bandwidths and prescribed eigenvalues and also give illustrative examples.
引用
收藏
页码:1079 / 1101
页数:22
相关论文
共 23 条
[1]  
Akaiwa K(2015)A finite-step construction of totally nonnegative matrices with specified eigenvalues Numer. Algor. 70 469-484
[2]  
Nakamura Y(1987)Totally positive matrices Linear Algebra Appl. 90 165-219
[3]  
Iwasaki M(2001)Bidiagonal factorizations of totally nonnegative matrices Amer. Math. Monthly 108 697-712
[4]  
Tsutsumi H(2005)Jordan structures of totally nonnegative matrices Canad. J. Math. 57 82-98
[5]  
Kondo K(2013)Integrable discrete hungry systems and their related matrix eigenvalues Annal. Mat. Pura Appl. 192 423-445
[6]  
Ando T(2004)Inner totally positive matrices Linear Algebra Appl. 393 179-195
[7]  
Fallat S(2002)On the convergence of a solution of the discrete Lotka-Volterra system Inverse Probl. 18 1569-1578
[8]  
Fallat S(1955)Bestimmung der Eigenwerte und Eigenvektoren einer Matrix mit Hilfe des Quotienten-Differenzen-Algorithmus Z. Angew. Math. Phys. 6 387-401
[9]  
Gekhtman MI(2009)Differential qd algorithm for totally nonnegative band matrices: convergence properties and error analysis JSIAM Letters 1 56-59
[10]  
Fukuda A(1999)Proof of solitonical nature of box and ball system by the means of inverse ultra-discretization Inverse Probl. 15 1639-1662