New quasi-symmetric designs constructed using mutually orthogonal Latin squares and Hadamard matrices

被引:0
作者
Carl Bracken
Gary McGuire
Harold Ward
机构
[1] National University of Ireland,Department of Mathematics, Maynooth Co
[2] University of Virginia,Department of Mathematics
来源
Designs, Codes and Cryptography | 2006年 / 41卷
关键词
Binary code; Grey–Rankin bound; Hadamard matrix; Mutually orthogonal Latin squares; Quasi-symmetric; 05B05; 05B20; 94B65;
D O I
暂无
中图分类号
学科分类号
摘要
Using Hadamard matrices and mutually orthogonal Latin squares, we construct two new quasi-symmetric designs, with parameters 2 − (66,30,29) and 2 − (78,36,30). These are the first examples of quasi-symmetric designs with these parameters. The parameters belong to the families 2 − (2u2 − u,u2 − u,u2 − u − 1) and 2 − (2u2 + u,u2,u2 − u), which are related to Hadamard parameters. The designs correspond to new codes meeting the Grey–Rankin bound.
引用
收藏
页码:195 / 198
页数:3
相关论文
共 4 条
[1]  
Dulmage AL(1960)Orthomorphisms of groups and orthogonal Latin squares Can J Math 13 356-372
[2]  
Johnson D(1997)Quasi-symmetric designs and codes meeting the Grey-Rankin bound J Combin Theory Ser A 78 280-291
[3]  
Mendelsohn NS(undefined)undefined undefined undefined undefined-undefined
[4]  
McGuire G(undefined)undefined undefined undefined undefined-undefined