Phylogeny of Dinoflagellate Plastid Genes Recently Transferred to the Nucleus Supports a Common Ancestry with Red Algal Plastid Genes

被引:0
|
作者
Yunling Wang
Simon Joly
David Morse
机构
[1] Université de Montréal,Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques
[2] Massey University,Allan Wilson Centre
来源
Journal of Molecular Evolution | 2008年 / 66卷
关键词
Chloroplast; Dinoflagellate; Secondary endosymbiosis; Molecular phylogeny;
D O I
暂无
中图分类号
学科分类号
摘要
It is generally accepted that peridinin-containing dinoflagellate plastids are derived from red alga, but whether they are secondary plastids equivalent to plastids of stramenopiles, haptophytes, or cryptophytes, or are tertiary plastids derived from one of the other secondary plastids, has not yet been completely resolved. As secondary plastids, plastid gene phylogeny should mirror that of nuclear genes, while incongruence in the two phylogenies should be anticipated if their origin was as tertiary plastids. We have analyzed the phylogeny of plastid-encoded genes from Lingulodinium as well as that of nuclear-encoded dinoflagellate homologues of plastid-encoded genes conserved in all other plastid genome sequences. Our analyses place the dinoflagellate, stramenopile, haptophyte, and cryptophyte plastids firmly in the red algal lineage, and in particular, the close relationship between stramenopile plastid genes and their dinoflagellate nuclear-encoded homologues is consistent with the hypothesis that red algal-type plastids have arisen only once in evolution.
引用
收藏
页码:175 / 184
页数:9
相关论文
共 50 条
  • [21] STRUCTURE AND SEQUENCE OF PLASTID GENES OF RED ALGAE (RHODOPHYTA) - PHYLOGENETIC IMPLICATIONS
    ZETSCHE, K
    VALENTIN, K
    MAID, U
    KOSTRZWA, M
    ENDOCYTOBIOSIS AND CELL RESEARCH, 1992, 8 (2-3): : 227 - 229
  • [22] AN EQUIVALENT TO BACTERIAL OMPR GENES IS ENCODED ON THE PLASTID GENOME OF RED ALGAE
    KESSLER, U
    MAID, U
    ZETSCHE, K
    PLANT MOLECULAR BIOLOGY, 1992, 18 (04) : 777 - 780
  • [23] Experimental Reconstruction of the Functional Transfer of Intron-Containing Plastid Genes to the Nucleus
    Fuentes, Ignacia
    Karcher, Daniel
    Bock, Ralph
    CURRENT BIOLOGY, 2012, 22 (09) : 763 - 771
  • [24] Plastome organization, genome-based phylogeny and evolution of plastid genes in Podophylloideae (Berberidaceae)
    Ye, Wen-Qing
    Yap, Zhao-Yan
    Li, Pan
    Comes, Hans
    Qiu, Ying-Xiong
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2018, 127 : 978 - 987
  • [25] Phylogeny of Celastraceae tribe Euonymeae inferred from morphological characters and nuclear and plastid genes
    Simmons, Mark P.
    McKenna, Miles J.
    Bacon, Christine D.
    Yakobson, Kendra
    Cappa, Jennifer J.
    Archer, Robert H.
    Ford, Andrew J.
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2012, 62 (01) : 9 - 20
  • [26] Phylogeny of the Elaeodendron group (Celastraceae) inferred from morphological characters and nuclear and plastid genes
    Islam, Melissa B.
    Simmons, Mark P.
    Archer, Robert H.
    SYSTEMATIC BOTANY, 2006, 31 (03) : 512 - 524
  • [27] Phylogeny of the characeae (class charophyceae) based on DNA sequence data from multiple plastid genes
    Karol, Kennet G.
    Sanders, Erin R.
    Kasper, Alan
    McCourt, Richard M.
    PHYCOLOGIA, 1997, 36 (04) : 46 - 46
  • [28] DIPLOIDY AND SEX AS THE SELECTIVE ADVANTAGES FOR RETAINING GENES TRANSFERRED FROM MITOCHONDRIAL AND PLASTID ANCESTORS IN THE NUCLEAR GENOME
    THORNLEY, AL
    HARINGTON, A
    JOURNAL OF THEORETICAL BIOLOGY, 1981, 91 (03) : 515 - 523
  • [29] PHYLOGENY OF THE CHAREAE (CHAROPHYTA) BASED ON ANALYSIS OF TWO PLASTID GENES (ATPB, RBCL) AND IMPLICATIONS FOR CONVENTIONAL TAXONOMY
    McCourt, R. M.
    Casanova, M. T.
    Perez, W.
    Proctor, V. W.
    Karol, K. G.
    JOURNAL OF PHYCOLOGY, 2011, 47 : 18 - 18
  • [30] Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny
    Thomas Werner Anthony Braukmann
    Maria Kuzmina
    Saša Stefanović
    Current Genetics, 2009, 55 : 323 - 337