Uniqueness for Inverse Boundary Value Problems by Dirichlet-to-Neumann Map on Subboundaries

被引:0
作者
Oleg Y. Imanuvilov
Masahiro Yamamoto
机构
[1] Colorado State University,Department of Mathematics
[2] The University of Tokyo,Department of Mathematical Sciences
来源
Milan Journal of Mathematics | 2013年 / 81卷
关键词
Primary 35R30; Secondary 35J25; inverse boundary value problem; Dirichlet-to-Neumann map on subboundary; elliptic operator; uniqueness; complex geometric optics solution;
D O I
暂无
中图分类号
学科分类号
摘要
We consider inverse boundary value problems for elliptic equations of second order of determining coefficients by Dirichlet-to-Neumann map on subboundaries, that is, the mapping from Dirichlet data supported on subboundary ∂Ω\Γ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \Omega \setminus \Gamma_{-}}$$\end{document} to Neumann data on subboundary ∂Ω\Γ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \Omega \setminus \Gamma_{+}}$$\end{document}. First we prove uniqueness results in three dimensions under some conditions such as Γ+∪Γ-¯=∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\Gamma_{+}\cup\Gamma_{-}}= \partial\Omega}$$\end{document} Next we survey uniqueness results in two dimensions for various elliptic systems for arbitrarily given Γ-=Γ+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma_{-} = \Gamma_{+}}$$\end{document} Our proof is based on complex geometric optics solutions which are constructed by a Carleman estimate.
引用
收藏
页码:187 / 258
页数:71
相关论文
共 101 条
  • [1] Akamatsu M.(1991)Identification of the Lamé coefficients from boundary observations Inverse Problems, 7 335-354
  • [2] Nakamura G.(1990)solutions of elliptic equations and the determination of conductivity by boundary measurements J.Diff. Equations, 84 252-273
  • [3] Steinberg S.(2006)Calderón’s inverse conductivity problem in the plane Ann. of Math., 163 265-299
  • [4] Alessandrini G.(2005)Calderón’s inverse problem for anisotropic conductivity in the plane Comm Partial Differential Equations, 30 207-224
  • [5] Astala K.(2003)Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in Fourier Analysis Appl., 9 1049-1056
  • [6] Päivärinta L.(1997), Comm. PDE, 22 1009-1027
  • [7] Astala K.(2008) >  2 J. Inverse Ill-Posed Probl., 16 19-34
  • [8] Päivärinta L.(1981), J Dokl. Akad. Nauk. SSSR, 260 269-272
  • [9] Lassas M.(2002)Uniqueness in the inverse conductivity problem with less regular conductivities Comm. Partial Differential Equations, 27 653-668
  • [10] Brown R.(1939)Recovering the potential from Cauchy data in two dimensions Ark. Mat. Astr. Fys. 2 B 1-9