On translation spreads of H(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(q)$$\end{document}

被引:0
作者
Giuseppe Marino
Olga Polverino
机构
[1] Seconda Università degli Studi di Napoli,Dipartimento di Matematica e Fisica
关键词
Generalized hexagon; Spread; Twisted cubic; Linear set;
D O I
10.1007/s10801-015-0599-9
中图分类号
学科分类号
摘要
Using the connection between translation spreads of H(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(q)$$\end{document} and linear sets (see Cardinali et al. in Eur J Comb 23:367–376, 2002; Lunardon and Polverino in J Algebraic Comb 18:255–262, 2003), some results on the existence of translation spreads of H(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(q)$$\end{document} are given, improving classification results contained in Offer (Spreads and ovoids of the split Cayley hexagon, 2000) and in Bonoli and Polverino (Discrete Math 296:129–142, 2005).
引用
收藏
页码:725 / 744
页数:19
相关论文
共 49 条
  • [1] Ball S(2003)On the classification of semifield flocks Adv. Math. 180 104-111
  • [2] Blokhuis A(1998)Translation ovoids of generalized quadrangles and hexagons Geom. Dedicata 72 19-62
  • [3] Lavrauw M(2000)Scattered spaces with respect to a spread in Geom. Dedicata 81 231-243
  • [4] Bloemen I(2005)The twisted cubic of Discrete Math. 296 129-142
  • [5] Thas JA(2002) and translation spreads of Eur. J. Comb. 23 367-376
  • [6] Van Maldeghem H(1962)Translation spreads of the classical generalized hexagon Acta Arithmetica VII 167-172
  • [7] Blokhuis A(1993)A theorem on “ordered” polynomials in a finite field Beiträge Algebra Geom. 34 217-232
  • [8] Lavrauw M(1982)The finite Moufang hexagons coordinatized Can. J. Math. 34 1195-1207
  • [9] Bonoli G(2006)Ovoids and translation planes Des. Codes Cryptogr. 38 113-123
  • [10] Polverino O(2011)Sublines of prime order contained in the set of internal points of a conic Finite Fields Appl. 17 225-239