Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives

被引:0
作者
Chun Wang
Tian-Zhou Xu
机构
[1] Beijing Institute of Technology,School of Mathematics and Statistics
[2] Changzhi University,Department of Mathematics
来源
Applications of Mathematics | 2015年 / 60卷
关键词
Hyers-Ulam stability; Laplace transform method; fractional differential equation; Caputo fractional derivative; 26D10; 34A08;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to study the stability of fractional differential equations in Hyers-Ulam sense. Namely, if we replace a given fractional differential equation by a fractional differential inequality, we ask when the solutions of the fractional differential inequality are close to the solutions of the strict differential equation. In this paper, we investigate the Hyers-Ulam stability of two types of fractional linear differential equations with Caputo fractional derivatives. We prove that the two types of fractional linear differential equations are Hyers-Ulam stable by applying the Laplace transform method. Finally, an example is given to illustrate the theoretical results.
引用
收藏
页码:383 / 393
页数:10
相关论文
共 50 条
  • [1] HYERS-ULAM STABILITY OF FRACTIONAL LINEAR DIFFERENTIAL EQUATIONS INVOLVING CAPUTO FRACTIONAL DERIVATIVES
    Wang, Chun
    Xu, Tian-Zhou
    APPLICATIONS OF MATHEMATICS, 2015, 60 (04) : 383 - 393
  • [2] HYERS-ULAM STABILITY OF A CLASS OF FRACTIONAL LINEAR DIFFERENTIAL EQUATIONS
    Wang, Chun
    Xu, Tian-Zhou
    KODAI MATHEMATICAL JOURNAL, 2015, 38 (03) : 510 - 520
  • [3] On Hyers-Ulam Stability for Fractional Differential Equations Including the New Caputo-Fabrizio Fractional Derivative
    Basci, Yasennn
    Ogrekci, Suleyman
    Misir, Adil
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (05)
  • [4] Hyers-Ulam stability of linear fractional differential equations with variable coefficients
    Liu, Hui
    Li, Yongjin
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [5] Hyers-Ulam stability for boundary value problem of fractional differential equations with κ$$ \kappa $$-Caputo fractional derivative
    Vu, Ho
    Rassias, John M.
    Hoa, Ngo Van
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 438 - 460
  • [6] Existence and Hyers-Ulam Stability of Jerk-Type Caputo and Hadamard Mixed Fractional Differential Equations
    Ma, Yanli
    Maryam, Maryam
    Riaz, Usman
    Popa, Ioan-Lucian
    Ragoub, Lakhdar
    Zada, Akbar
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (03)
  • [7] Hyers-Ulam stability and existence of solutions for weighted Caputo-Fabrizio fractional differential equations
    Wu X.
    Chen F.
    Deng S.
    Chaos, Solitons and Fractals: X, 2020, 5
  • [8] Hyers-Ulam Stability and Existence of Solutions for Differential Equations with Caputo-Fabrizio Fractional Derivative
    Liu, Kui
    Feckan, Michal
    O'Regan, D.
    Wang, JinRong
    MATHEMATICS, 2019, 7 (04):
  • [9] Hyers-Ulam Stability and Existence of Solutions to the Generalized Liouville-Caputo Fractional Differential Equations
    Liu, Kui
    Feckan, Michal
    Wang, Jinrong
    SYMMETRY-BASEL, 2020, 12 (06):
  • [10] On Hyers-Ulam-Rassias stability of fractional differential equations with Caputo derivative
    El-hady, El-sayed
    Ogrekci, Suleyman
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 22 (04): : 325 - 332