QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance

被引:0
|
作者
H. X. Lin
M. Z. Zhu
M. Yano
J. P. Gao
Z. W. Liang
W. A. Su
X. H. Hu
Z. H. Ren
D. Y. Chao
机构
[1] The Chinese Academy of Sciences,SHARF Laboratory, Shanghai Institute of Plant Physiology and Ecology
[2] The Chinese Academy of Sciences,National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology
[3] National Institute of Agrobiological Sciences,Department of Molecular Genetics
[4] Chinese Academy of Sciences,Northeast Institute of Geography and Agricultural Ecology
来源
关键词
Salt Stress; Salt Tolerance; Physiological Trait; RFLP Marker; Total Phenotypic Variance;
D O I
暂无
中图分类号
学科分类号
摘要
An F2 and an equivalent F3 population derived from a cross between a high salt-tolerance indica variety, Nona Bokra, and a susceptible elite japonica variety, Koshihikari, were produced. We performed QTL mapping for physiological traits related to rice salt-tolerance. Three QTLs for survival days of seedlings (SDSs) under salt stress were detected on chromosomes 1, 6 and 7, respectively, and explained 13.9% to 18.0% of the total phenotypic variance. Based on the correlations between SDSs and other physiological traits, it was considered that damage of leaves was attributed to accumulation of Na+ in the shoot by transport of Na+ from the root to the shoot in external high concentration. We found eight QTLs including three for three traits of the shoots, and five for four traits of the roots at five chromosomal regions, controlled complex physiological traits related to rice salt-tolerance under salt stress. Of these QTLs, the two major QTLs with the very large effect, qSNC-7 for shoot Na+ concentration and qSKC-1 for shoot K+ concentration, explained 48.5% and 40.1% of the total phenotypic variance, respectively. The QTLs detected between the shoots and the roots almost did not share the same map locations, suggesting that the genes controlling the transport of Na+ and K+ between the shoots and the roots may be different.
引用
收藏
页码:253 / 260
页数:7
相关论文
共 50 条
  • [21] QTL Analysis of Na+ and K+ Concentrations in Roots and Shoots under Different Levels of NaCl Stress in Rice (Oryza sativa L.)
    Wang, Zhoufei
    Chen, Zhiwei
    Cheng, Jinping
    Lai, Yanyan
    Wang, Jianfei
    Bao, Yongmei
    Huang, Ji
    Zhang, Hongsheng
    PLOS ONE, 2012, 7 (12):
  • [22] TOLERANCE TO NACL AND K+/NA+ SELECTIVITY IN TRITICALE
    BIZID, E
    ZID, E
    GRIGNON, C
    AGRONOMIE, 1988, 8 (01): : 23 - 27
  • [23] ACTION OF MN++ ON ABSORPTION OF NA+, K+, AND RB+ BY EXCISED RICE ROOTS
    RAMANI, S
    KANNAN, S
    ZEITSCHRIFT FUR PFLANZENPHYSIOLOGIE, 1976, 77 (02): : 107 - 112
  • [24] Ionic selectivity and coordinated transport of Na+ and K+ in flag leaves render differential salt tolerance in rice at the reproductive stage
    Chakraborty, Koushik
    Chattaopadhyay, Krishnendu
    Nayak, Lopamudra
    Ray, Soham
    Yeasmin, Lucina
    Jena, Priyanka
    Gupta, Sunanda
    Mohanty, Sangram K.
    Swain, Padmini
    Sarkar, Ramani K.
    PLANTA, 2019, 250 (05) : 1637 - 1653
  • [25] Ionic selectivity and coordinated transport of Na+ and K+ in flag leaves render differential salt tolerance in rice at the reproductive stage
    Koushik Chakraborty
    Krishnendu Chattaopadhyay
    Lopamudra Nayak
    Soham Ray
    Lucina Yeasmin
    Priyanka Jena
    Sunanda Gupta
    Sangram K. Mohanty
    Padmini Swain
    Ramani K. Sarkar
    Planta, 2019, 250 : 1637 - 1653
  • [26] Relationships between K+ uptake and Na+ entry
    Rodriguez-Navarro, A.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2005, 141 (03): : S340 - S341
  • [27] The phytohormonal regulation of Na+/K+ and reactive oxygen species homeostasis in rice salt response
    Hua Qin
    Rongfeng Huang
    Molecular Breeding, 2020, 40
  • [28] Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants
    Miranda, Rafael de Souza
    Alvarez-Pizarro, Juan Carlos
    Silva Araujo, Celso Marinones
    Prisco, Jose Tarquinio
    Gomes-Filho, Eneas
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (03) : 841 - 852
  • [29] Salt tolerance and regulation of Na+, K+, and proline contents in different wild turfgrasses under salt stress
    Tada, Yuichi
    Kochiya, Ryuto
    Toyoizumi, Masayuki
    Takano, Yuka
    PLANT BIOTECHNOLOGY, 2023, 40 (04) : 301 - 309
  • [30] INTRACELLULAR NA+ AND K+ CONTENTS OF ZYGOSACCHAROMYCES-ROUXII MUTANTS DEFECTIVE IN SALT TOLERANCE
    USHIO, K
    OHTSUKA, H
    NAKATA, Y
    JOURNAL OF FERMENTATION AND BIOENGINEERING, 1992, 73 (01): : 11 - 15