Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent

被引:0
作者
Daisuke Naimen
机构
[1] Osaka City University,Department of Mathematics, Graduate School of Science
来源
Nonlinear Differential Equations and Applications NoDEA | 2014年 / 21卷
关键词
Primary 35J60; Secondary 35J20; 35J25; Kirchhoff; Elliptic; Critical; Variational method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the following Kirchhoff type elliptic boundary value problem involving a critical nonlinearity: -(a+b∫Ω|∇u|2dx)Δu=μg(x,u)+u5,u>0inΩ,u=0on∂Ω,(K1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{\begin{array}{ll}-(a+b\int_{\Omega}|\nabla u|^2dx)\Delta u=\mu g(x,u)+u^5, u>0& \text{in }\Omega,\\ u=0& \text{on }\partial \Omega,\end{array}\right. {\rm {(K1)}}$$\end{document}here Ω⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^3}$$\end{document} is a bounded domain with smooth boundary ∂Ω,a,b≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial \Omega, a,b \geq 0}$$\end{document} and a + b > 0. Under several conditions on g∈C(Ω¯×R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})}$$\end{document} and μ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu \in \mathbb{R}}$$\end{document}, we prove the existence and nonexistence of solutions of (K1). This is some extension of a part of Brezis–Nirenberg’s result in 1983.
引用
收藏
页码:885 / 914
页数:29
相关论文
共 48 条
[1]  
Alves C.O.(2005)Positive solutions for a quasilinear elliptic equation of Kirchhoff type Comput. Math. Appl. 49 85-93
[2]  
Corrêa F.J.S.A.(2010)On a class of nonlocal elliptic problems with critical growth Differ. Equ. Appl. 2 409-417
[3]  
Ma T.F.(2012)Nonlinear perturbations of a periodic Kirchhoff equation in Nonlinear Anal. 75 2750-2759
[4]  
Alves C.O.(1996)On the well-posedness of Kirchhoff string Trans. Am. Math. Soc. 348 305-330
[5]  
Corrêa F.J.S.A.(2011)Multiple critical points for a class of nonlinear functionals Ann. Mat. Pure Appl. 190 507-523
[6]  
Figueiredo G.M.(1940)Sur une classe d’équations fonctionnelles aux dérivées partielles Izk Akad. Nauk SSSR. Ser. Mat. 4 17-26
[7]  
Alves C.O.(1983)Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents Commun. Pure Appl. Math. 36 437-477
[8]  
Figueiredo G.M.(1945)On the nonlinear vibration problem of the elastic string Quart. Appl. Math. 3 157-165
[9]  
Arosio A.(1949)A note on the vibrating string Quart. Appl. Math. 7 97-101
[10]  
Panizzi S.(1972)A variant of the Ljusternik–Schnirelmann theory Indiana Univ. Math. J. 22 65-74