Quantum Speed Limits for Time Evolution of a System Subspace

被引:0
作者
S. Albeverio
A. K. Motovilov
机构
[1] Institut für Angewandte Mathematik and HCM,
[2] Universität Bonn,undefined
[3] Bogoliubov Laboratory of Theoretical Physics,undefined
[4] JINR,undefined
[5] Dubna State University,undefined
来源
Physics of Particles and Nuclei | 2022年 / 53卷
关键词
Mandelstam–Tamm inequality; Fleming bound; quantum speed limit; subspace evolution;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:287 / 291
页数:4
相关论文
共 17 条
  • [1] Deffner S.(2017)Quantum speed limits: From Heisenberg’s uncertainty principle to optimal quantum control J. Phys. A: Math. Gen. 50 453001-3950
  • [2] Campbell S.(2016)Quantum speed limits—primer, perspectives, and potential future directions Quantum Inf. Process. 15 3919-254
  • [3] Frey M. R.(1945)The uncertainty relation between energy and time in nonrelativistic quantum mechanics J. Phys. (USSR) 9 249-195
  • [4] Mandelstam L. I.(1998)The maximum speed of dynamical evolution Physica D 120 188-240
  • [5] Tamm I. E.(1973)A unitary bound on the evolution of nonstationary states Nuovo Cimento A 16 232-1032
  • [6] Margolus N.(2020)Optimal time evolution for pseudo-Hermitian Hamiltonians Theor. Math. Phys. 204 1020-289
  • [7] Levitin L. B.(1993)The rectifiable metric on the set of closed subspaces of Hilbert space Trans. Am. Math. Soc. 227 279-1416
  • [8] Fleming G. N.(2013)Sharpening the norm bound in the subspace perturbation theory Compl. Anal. Oper. Theory 7 1389-15
  • [9] Wang W. H.(2015)The length metric on the set of orthogonal projections and new estimates in the subspace perturbation problem J. Reine Angew. Math. 708 1-undefined
  • [10] Chen Z. L.(undefined)undefined undefined undefined undefined-undefined