Multipath feedforward network for single image super-resolution

被引:0
|
作者
Mingyu Shen
Pengfei Yu
Ronggui Wang
Juan Yang
Lixia Xue
Min Hu
机构
[1] Hefei University of Technology,College of Computer and Information
来源
Multimedia Tools and Applications | 2019年 / 78卷
关键词
Super-resolution; Convolutional neural network; Multipath feedforward network; Staged feature fusion;
D O I
暂无
中图分类号
学科分类号
摘要
Single image super-resolution (SR) models which based on convolutional neural network mostly use chained stacking to build the network. It ignores the role of hierarchical features and relationship between layers, resulting in the loss of high-frequency components. To address these drawbacks, we introduce a novel multipath feedforward network (MFNet) based on staged feature fusion unit (SFF). By changing the connection between networks, MFNet strengthens the inter-layer relationship and improves the information flow in the network, thereby extracting more abundant high-frequency components. Firstly, SFF extracts and integrates hierarchical features by dense connection, which expands the information flow of the network. Afterwards, we use adaptive method to learn effective features in hierarchical features. Then, in order to strengthen relationship between layers and fully use the hierarchical features, we use multi-feedforward structure to connect each SFF, which enables multipath feature re-usage and explores more abundant high-frequency components on this basis. Finally, the image reconstruction is realized by combining the shallow features and the global residual. Extensive benchmark evaluation shows that the performance of MFNet has a significant improvement over the state-of-the-art methods.
引用
收藏
页码:19621 / 19640
页数:19
相关论文
共 50 条
  • [21] Multilevel and Multiscale Network for Single-Image Super-Resolution
    Yang, Yong
    Zhang, Dongyang
    Huang, Shuying
    Wu, Jiajun
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) : 1877 - 1881
  • [22] Deep Residual Dense Network for Single Image Super-Resolution
    Musunuri, Yogendra Rao
    Kwon, Oh-Seol
    ELECTRONICS, 2021, 10 (05) : 1 - 15
  • [23] Single image super-resolution via a ternary attention network
    Yang, Lianping
    Tang, Jian
    Niu, Ben
    Fu, Haoyue
    Zhu, Hegui
    Jiang, Wuming
    Wang, Xin
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13067 - 13081
  • [24] A lightweight generative adversarial network for single image super-resolution
    Xinbiao Lu
    Xupeng Xie
    Chunlin Ye
    Hao Xing
    Zecheng Liu
    Changchun Cai
    The Visual Computer, 2024, 40 : 41 - 52
  • [25] Nested Dense Attention Network for Single Image Super-Resolution
    Qiu, Cheng
    Yao, Yirong
    Du, Yuntao
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL (ICMR '21), 2021, : 250 - 258
  • [26] A Single Image Super-Resolution Algorithm Based on Dense Residual Convolutional Network
    Liu Chengming
    Duan Junyi
    Pang Haibo
    Pattern Recognition and Image Analysis, 2021, 31 : 1 - 6
  • [27] LMSN:a lightweight multi-scale network for single image super-resolution
    Zou, Yiye
    Yang, Xiaomin
    Albertini, Marcelo Keese
    Hussain, Farhan
    MULTIMEDIA SYSTEMS, 2021, 27 (04) : 845 - 856
  • [28] A lightweight generative adversarial network for single image super-resolution
    Lu, Xinbiao
    Xie, Xupeng
    Ye, Chunlin
    Xing, Hao
    Liu, Zecheng
    Cai, Changchun
    VISUAL COMPUTER, 2024, 40 (01) : 41 - 52
  • [29] Channel Hourglass Residual Network For Single Image Super-Resolution
    Hao, Fangwei
    Ma, Xindi
    Zhang, Taiping
    Tang, Yuanyan
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [30] Single Image Super-Resolution Based on Convolutional Neural Network
    Shi Ziteng
    Wang Zhiren
    Wang Rui
    Ren Fuquan
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (12)