A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems

被引:0
作者
Li Wang
Kun Cheng
Binlin Zhang
机构
[1] East China Jiaotong University,College of Science
[2] Jingdezhen Ceramic Institute,Department of Information Engineering
[3] Shandong University of Science and Technology,College of Mathematics and System Science
来源
Applied Mathematics & Optimization | 2021年 / 83卷
关键词
Fractional Laplacian; Kirchhoff-type problem; Strong singularity; Uniqueness of solution; 35B33; 35B38; 35J50; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following Kirchhoff-type fractional Laplacian problem with strong singularity: (a+b‖u‖2)(-Δ)su=f(x)u-γ-k(x)uqinΩ,u>0inΩ,u=0inR3\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} (a+b\Vert u\Vert ^2) (-\Delta )^{s} u =f(x)u^{-\gamma }-k(x)u^q &{}\quad \text {in } \Omega , \\ u>0 &{}\quad \text {in } \Omega ,\\ u =0&{}\quad \text {in }\mathbb {R}^3\backslash \Omega , \end{array}\right. \end{aligned}$$\end{document}where (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^{s}$$\end{document} is the fractional Laplace operator, a,b≥0,a+b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b \ge 0, a+b>0$$\end{document}, Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded smooth domain of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}, k∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \in L^{\infty }(\Omega )$$\end{document} is a non-negative function, q∈(0,1),γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in (0,1), \gamma > 1$$\end{document} and f∈L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in L^1 (\Omega )$$\end{document} is positive almost everywhere in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. Using variational method and Nehari method, we obtain a uniqueness result. A novelty is that the Kirchhoff coefficient may vanish at zero.
引用
收藏
页码:1859 / 1875
页数:16
相关论文
共 50 条
[41]   Existence of Ground States for Kirchhoff-Type Problems with General Potentials [J].
He, Fuli ;
Qin, Dongdong ;
Tang, Xianhua .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (08) :7709-7725
[42]   Infinitely many radial solutions for Kirchhoff-type problems in RN [J].
Jin, Jiahua ;
Wu, Xian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (02) :564-574
[43]   Existence of Ground States for Kirchhoff-Type Problems with General Potentials [J].
Fuli He ;
Dongdong Qin ;
Xianhua Tang .
The Journal of Geometric Analysis, 2021, 31 :7709-7725
[44]   KIRCHHOFF-TYPE PROBLEMS WITH CRITICAL SOBOLEV EXPONENT IN A HYPERBOLIC SPACE [J].
Carriao, Paulo Cesar ;
dos Reis Costa, Augusto Cesar ;
Miyagaki, Olimpio Hiroshi ;
Vicente, Andre .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
[45]   INFINITELY MANY SOLUTIONS FOR KIRCHHOFF-TYPE PROBLEMS DEPENDING ON A PARAMETER [J].
Sun, Juntao ;
Ji, Yongbao ;
Wu, Tsung-Fang .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[46]   Energy functionals of Kirchhoff-type problems having multiple global minima [J].
Ricceri, Biagio .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 115 :130-136
[47]   Perturbed Kirchhoff-type Neumann problems in Orlicz-Sobolev spaces [J].
Heidarkhani, Shapour ;
Caristi, Giuseppe ;
Ferrara, Massimiliano .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (10) :2008-2019
[48]   Existence and concentration of ground state solutions for a class of Kirchhoff-type problems [J].
Lin, Xiaoyan ;
Wei, Jiuyang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 195
[49]   Non-trivial solutions for nonlocal elliptic problems of Kirchhoff-type [J].
Afrouzi, Ghasem A. ;
Hadjian, Armin .
GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (03) :293-301
[50]   A Kirchhoff Type Equation in RN Involving the fractional (p, q)-Laplacian [J].
Ambrosio, Vincenzo .
JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (04)