Accurate parameter estimation for Bayesian network classifiers using hierarchical Dirichlet processes

被引:0
|
作者
François Petitjean
Wray Buntine
Geoffrey I. Webb
Nayyar Zaidi
机构
[1] Monash University,Faculty of Information Technology
来源
Machine Learning | 2018年 / 107卷
关键词
Bayesian network; Parameter estimation; Graphical models; Dirichlet processes; Smoothing; Classification;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a novel parameter estimation method for the probability tables of Bayesian network classifiers (BNCs), using hierarchical Dirichlet processes (HDPs). The main result of this paper is to show that improved parameter estimation allows BNCs to outperform leading learning methods such as random forest for both 0–1 loss and RMSE, albeit just on categorical datasets. As data assets become larger, entering the hyped world of “big”, efficient accurate classification requires three main elements: (1) classifiers with low-bias that can capture the fine-detail of large datasets (2) out-of-core learners that can learn from data without having to hold it all in main memory and (3) models that can classify new data very efficiently. The latest BNCs satisfy these requirements. Their bias can be controlled easily by increasing the number of parents of the nodes in the graph. Their structure can be learned out of core with a limited number of passes over the data. However, as the bias is made lower to accurately model classification tasks, so is the accuracy of their parameters’ estimates, as each parameter is estimated from ever decreasing quantities of data. In this paper, we introduce the use of HDPs for accurate BNC parameter estimation even with lower bias. We conduct an extensive set of experiments on 68 standard datasets and demonstrate that our resulting classifiers perform very competitively with random forest in terms of prediction, while keeping the out-of-core capability and superior classification time.
引用
收藏
页码:1303 / 1331
页数:28
相关论文
共 50 条
  • [1] Accurate parameter estimation for Bayesian network classifiers using hierarchical Dirichlet processes
    Petitjean, Francois
    Buntine, Wray
    Webb, Geoffrey I.
    Zaidi, Nayyar
    MACHINE LEARNING, 2018, 107 (8-10) : 1303 - 1331
  • [2] A general guide in Bayesian and robust Bayesian estimation using Dirichlet processes
    Karimnezhad, Ali
    Zarepour, Mahmoud
    METRIKA, 2020, 83 (03) : 321 - 346
  • [3] A general guide in Bayesian and robust Bayesian estimation using Dirichlet processes
    Ali Karimnezhad
    Mahmoud Zarepour
    Metrika, 2020, 83 : 321 - 346
  • [4] An efficient parameter estimation method for generalized Dirichlet priors in naive Bayesian classifiers with multinomial models
    Wong, Tzu-Tsung
    Liu, Chao-Rui
    PATTERN RECOGNITION, 2016, 60 : 62 - 71
  • [5] Hierarchical Bayesian models with subdomain clustering for parameter estimation of discrete Bayesian network
    Mun, Changuk
    Bai, Jong-Wha
    Song, Junho
    STRUCTURAL SAFETY, 2025, 114
  • [6] Efficient parameter learning of Bayesian network classifiers
    Nayyar A. Zaidi
    Geoffrey I. Webb
    Mark J. Carman
    François Petitjean
    Wray Buntine
    Mike Hynes
    Hans De Sterck
    Machine Learning, 2017, 106 : 1289 - 1329
  • [7] Efficient parameter learning of Bayesian network classifiers
    Zaidi, Nayyar A.
    Webb, Geoffrey I.
    Carman, Mark J.
    Petitjean, Francois
    Buntine, Wray
    Hynes, Mike
    De Sterck, Hans
    MACHINE LEARNING, 2017, 106 (9-10) : 1289 - 1329
  • [8] On Discriminative Parameter Learning of Bayesian Network Classifiers
    Pernkopf, Franz
    Wohlmayr, Michael
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT II, 2009, 5782 : 221 - 237
  • [9] Hierarchical Independence Thresholding for learning Bayesian network classifiers
    Liu, Yang
    Wang, Limin
    Mammadov, Musa
    Chen, Shenglei
    Wang, Gaojie
    Qi, Sikai
    Sun, Minghui
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [10] Discriminative parameter learning of general Bayesian network classifiers
    Shen, B
    Su, XY
    Greiner, R
    Musilek, P
    Cheng, C
    15TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2003, : 296 - 305