TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana

被引:0
作者
Q. Xu
W. J. Feng
H. R. Peng
Z. F. Ni
Q. X. Sun
机构
[1] China Agricultural University,State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic Improvement
[2] ShanXi Academy of Agricultural Science,Cotton Research Institute
来源
Cereal Research Communications | 2014年 / 42卷
关键词
wheat; seed germination; abiotic stress;
D O I
暂无
中图分类号
学科分类号
摘要
Members of WRKY gene family encode transcription factors involved in plant developmental processes and response to biotic and abiotic stresses. In order to understand the function of the TaWRKY71 gene, a homologue gene was isolated and characterised in wheat (Triticum aestivum L.) genotype TAM107. Tissue-specific gene expression profiles indicated that TaWRKY71 was constitutively expressed in roots, stems, leaves, stamen and pistil. The relative expression of TaWRKY71 was elucidated under ABA treatment and other abiotic stresses. In agreement with this, several putative cis-acting elements involved in ABA-response, drought-inducibility, low-temperature and heat response were detected in the promoter region of TaWRKY71. The function of TaWRKY71 was further determined by transforming Arabidopsis thaliana. Transgenic plants over-expressing TaWRKY71 displayed enhanced seed germination under ABA treatment and were tolerant to salt and drought stresses. These results indicate that TaWRKY71 gene might play important roles in seed germination and abiotic stress response.
引用
收藏
页码:47 / 57
页数:10
相关论文
共 50 条
  • [21] The SlASR gene cloned from the extreme halophyte Suaeda liaotungensis K. enhances abiotic stress tolerance in transgenic Arabidopsis thaliana
    Hu, Yu-Xin
    Yang, Xing
    Li, Xiao-Lan
    Yu, Xiao-Dong
    Li, Qiu-Li
    GENE, 2014, 549 (02) : 243 - 251
  • [22] Isolation and Functional Analysis of VvWRKY28, a Vitis vinifera WRKY Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana
    Liu, Wei
    Liang, Xiaoqi
    Cai, Weijia
    Wang, Hao
    Liu, Xu
    Cheng, Longfei
    Song, Penghui
    Luo, Guijie
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)
  • [23] A CAM-Related NF-YB Transcription Factor Enhances Multiple Abiotic Stress Tolerance in Arabidopsis
    Malwattage, Naleeka R.
    Wone, Beate
    Wone, Bernard W. M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (13)
  • [24] Membrane-Bound Transcription Factor ZmNAC074 Positively Regulates Abiotic Stress Tolerance in Transgenic Arabidopsis
    Qian, Yexiong
    Xi, Yan
    Xia, Lingxue
    Qiu, Ziling
    Liu, Li
    Ma, Hui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (22)
  • [25] Artemin molecular chaperone from Artemia urmiana improves tolerance of Arabidopsis thaliana to abiotic stress
    Fallahi-Pashaki, Tayebe
    Shirzadian-Khoramabad, Reza
    Sohani, M. Mehdi
    FUNCTIONAL PLANT BIOLOGY, 2024, 51 (12)
  • [26] Picea wilsonii NAC Transcription Factor PwNAC30 Negatively Regulates Abiotic Stress Tolerance in Transgenic Arabidopsis
    Liang, Ke-hao
    Wang, Ai-bin
    Yuan, Yi-hang
    Miao, Ya-hui
    Zhang, Ling-yun
    PLANT MOLECULAR BIOLOGY REPORTER, 2020, 38 (04) : 554 - 571
  • [27] Overexpression of mango MiMFT inhibits seed germination and enhances abiotic stress tolerance in transgenic Arabidopsis
    Lu, Ting-ting
    Fan, Zhi-yi
    He, Xin-hua
    Yu, Hai-xia
    Liang, Rong-zhen
    Huang, Xing
    Zhang, Yi-li
    Zhu, Jia-wei
    Wang, Jin-ying
    Luo, Cong
    SCIENTIA HORTICULTURAE, 2023, 307
  • [28] Picea wilsonii NAC Transcription Factor PwNAC30 Negatively Regulates Abiotic Stress Tolerance in Transgenic Arabidopsis
    Ke-hao Liang
    Ai-bin Wang
    Yi-hang Yuan
    Ya-hui Miao
    Ling-yun Zhang
    Plant Molecular Biology Reporter, 2020, 38 : 554 - 571
  • [29] The Grape VlWRKY3 Gene Promotes Abiotic and Biotic Stress Tolerance in Transgenic Arabidopsis thaliana
    Guo, Rongrong
    Qiao, Hengbo
    Zhao, Jiao
    Wang, Xianhang
    Tu, Mingxing
    Guo, Chunlei
    Wan, Ran
    Li, Zhi
    Wang, Xiping
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [30] Constitutive expression of a membrane-bound NAC transcription factor AmNTL1 from a desert shrub Ammopiptanthus mongolicus enhances abiotic stress tolerance of transgenic Arabidopsis
    Tang, Kuangang
    Zhang, Yanxia
    Ren, Meiyan
    Xue, Min
    Zhang, Min
    Pang, Xinyue
    Wang, Maoyan
    SOUTH AFRICAN JOURNAL OF BOTANY, 2023, 156 : 99 - 109