On the growth of solutions of second order linear differential equations with extremal coefficients

被引:0
作者
Jian Ren Long
Peng Cheng Wu
Zheng Zhang
机构
[1] Guizhou Normal University,School of Mathematics and Computer Science
来源
Acta Mathematica Sinica, English Series | 2013年 / 29卷
关键词
Entire function; deficient value; Borel direction; order; 34M10; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the differential equation f″ +A(z)f′ +B(z)f = 0, where A and B ≢ 0 are entire functions. Assume that A is extremal for Yang’s inequality, then we will give some conditions on B which can guarantee that every non-trivial solution f of the equation is of infinite order.
引用
收藏
页码:365 / 372
页数:7
相关论文
共 25 条
[1]  
Gundersen G. G.(1988)Finite order solution of second order linear differential equations Trans. Amer. Math. Soc. 305 415-429
[2]  
Hellerstein S.(1991)On the growth of solutions of Trans. Amer. Math. Soc. 324 693-706
[3]  
Miles J.(1988)″ + Trans. Amer. Math. Soc. 308 583-601
[4]  
Rossi J.(1988)′ + J. London Math. Soc. 37 88-104
[5]  
Yang L.(1976) = 0 Acta Mathematica Sinica 19 157-168
[6]  
Gundersen G. G.(1994)Deficient values of and angular distribution of entire functions Acta Mathematica Sinica, English Series 10 168-178
[7]  
Yang L.(1963)Estimates for the logarithmic derivative of a meromorphic function Quart. J. Math. Oxford Ser. (2) 14 293-302
[8]  
Zhang G. H.(1999)The distribution of Borel directin of entire function Kodai Math. J. 22 273-285
[9]  
Wu S. J.(2002)Some results on entire functions of finite lower order Sci. China Ser. A 45 290-303
[10]  
Barry P. D.(2008)On a theorem of Besicovitch J. Math. Anal. Appl. 342 39-51