Large Deviations for Quantum Markov Semigroups on the 2 × 2-Matrix Algebra

被引:0
作者
Henri Comman
机构
[1] University of Santiago de Chile,Department of Mathematics
来源
Annales Henri Poincaré | 2008年 / 9卷
关键词
Rate Function; Pure State; Large Deviation Principle; Weak Coupling Limit; Orthogonal Measure;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal{T}}_{*t})$$\end{document} be a predual quantum Markov semigroup acting on the full 2 × 2-matrix algebra and having an absorbing pure state. We prove that for any initial state ω, the net of orthogonal measures representing the net of states \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal{T}}_{*t}(\omega))$$\end{document} satisfies a large deviation principle in the pure state space, with a rate function given in terms of the generator, and which does not depend on ω. This implies that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal{T}}_{*t}(\omega))$$\end{document} is faithful for all t large enough. Examples arising in weak coupling limit are studied.
引用
收藏
页码:979 / 1003
页数:24
相关论文
empty
未找到相关数据