Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({\mathcal{T}}_{*t})$$\end{document} be a predual quantum Markov semigroup acting on the full 2 × 2-matrix algebra and having an absorbing pure state. We prove that for any initial state ω, the net of orthogonal measures representing the net of states \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({\mathcal{T}}_{*t}(\omega))$$\end{document} satisfies a large deviation principle in the pure state space, with a rate function given in terms of the generator, and which does not depend on ω. This implies that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({\mathcal{T}}_{*t}(\omega))$$\end{document} is faithful for all t large enough. Examples arising in weak coupling limit are studied.