Monotone Sobolev Functions in Planar Domains: Level Sets and Smooth Approximation

被引:0
作者
Dimitrios Ntalampekos
机构
[1] Stony Brook University,Institute for Mathematical Sciences
来源
Archive for Rational Mechanics and Analysis | 2020年 / 238卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that almost every level set of a Sobolev function in a planar domain consists of points, Jordan curves, or homeomorphic copies of an interval. For monotone Sobolev functions in the plane we have the stronger conclusion that almost every level set is an embedded 1-dimensional topological submanifold of the plane. Here monotonicity is in the sense of Lebesgue: the maximum and minimum of the function in an open set are attained at the boundary. Our result is an analog of Sard’s theorem, which asserts that for a C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}-smooth function in a planar domain almost every value is a regular value. As an application, using the theory of p-harmonic functions, we show that monotone Sobolev functions in planar domains can be approximated uniformly and in the Sobolev norm by smooth monotone functions.
引用
收藏
页码:1199 / 1230
页数:31
相关论文
共 50 条
[41]   SOBOLEV REGULARITY OF THE BEURLING TRANSFORM ON PLANAR DOMAINS [J].
Prats, Marti .
PUBLICACIONS MATEMATIQUES, 2017, 61 (02) :291-336
[42]   Fractional Sobolev isometric immersions of planar domains [J].
Li, Siran ;
Pakzad, Mohammad Reza ;
Schikorra, Armin .
ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2024, 25 (02) :765-809
[43]   On planar Sobolev Lpm-extension domains [J].
Shvartsman, Pavel ;
Zobin, Nahum .
ADVANCES IN MATHEMATICS, 2016, 287 :237-346
[44]   ON THE APPROXIMATION NUMBERS OF SOBOLEV EMBEDDINGS FOR IRREGULAR DOMAINS [J].
EVANS, WD ;
HARRIS, DJ .
QUARTERLY JOURNAL OF MATHEMATICS, 1989, 40 (157) :13-42
[45]   Approximation of functions and sets [J].
Penot, JP ;
Zalinescu, C .
APPROXIMATION, OPTIMIZATION AND MATHEMATICAL ECONOMICS, 2001, :255-274
[46]   EXCEPTIONAL SETS FOR HOLOMORPHIC SOBOLEV FUNCTIONS [J].
AHERN, P .
MICHIGAN MATHEMATICAL JOURNAL, 1988, 35 (01) :29-41
[47]   Cluster sets for sobolev functions and quasiminimizers [J].
Anders Björn .
Journal d'Analyse Mathématique, 2010, 112 :49-77
[48]   Adaptive monotone rational approximation on finite sets [J].
E.H. Kaufman ;
D.J. Leeming ;
G.D. Taylor .
Numerical Algorithms, 2003, 32 (1) :1-12
[49]   Nowhere monotone functions and microscopic sets [J].
Karasinska, A. ;
Wagner-Bojakowska, E. .
ACTA MATHEMATICA HUNGARICA, 2008, 120 (03) :235-248
[50]   On the bi-Sobolev planar homeomorphisms and their approximation [J].
Pratelli, Aldo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 154 :258-268