Monotone Sobolev Functions in Planar Domains: Level Sets and Smooth Approximation

被引:0
作者
Dimitrios Ntalampekos
机构
[1] Stony Brook University,Institute for Mathematical Sciences
来源
Archive for Rational Mechanics and Analysis | 2020年 / 238卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that almost every level set of a Sobolev function in a planar domain consists of points, Jordan curves, or homeomorphic copies of an interval. For monotone Sobolev functions in the plane we have the stronger conclusion that almost every level set is an embedded 1-dimensional topological submanifold of the plane. Here monotonicity is in the sense of Lebesgue: the maximum and minimum of the function in an open set are attained at the boundary. Our result is an analog of Sard’s theorem, which asserts that for a C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document}-smooth function in a planar domain almost every value is a regular value. As an application, using the theory of p-harmonic functions, we show that monotone Sobolev functions in planar domains can be approximated uniformly and in the Sobolev norm by smooth monotone functions.
引用
收藏
页码:1199 / 1230
页数:31
相关论文
共 50 条
[31]   Estimating smooth monotone functions [J].
Ramsay, JO .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :365-375
[32]   Traces of monotone functions in weighted Sobolev spaces [J].
Manfredi, JJ ;
Villamor, E .
ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (02) :403-422
[33]   Diffeomorphic approximation of planar Sobolev homeomorphisms in Orlicz Sobolev spaces [J].
Campbell, Daniel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (01) :125-205
[34]   TOPOLOGY OF SETS IN PLANAR DOMAINS [J].
BENNETON, G .
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (16) :797-&
[35]   Boundary limits of monotone Sobolev functions in Musielak-Orlicz spaces on uniform domains in a metric space [J].
Ohno, Takao ;
Shimomura, Tetsu .
KYOTO JOURNAL OF MATHEMATICS, 2017, 57 (01) :147-164
[36]   SMOOTH ZERO SETS AND INTERPOLATION SETS FOR SOME ALGEBRAS OF HOLOMORPHIC FUNCTIONS ON STRICTLY PSEUDOCONVEX DOMAINS [J].
NAGEL, A .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (02) :323-348
[37]   BIHOLOMORPHIC APPROXIMATION OF PLANAR DOMAINS [J].
CAIN, BE ;
TONDRA, RJ .
PACIFIC JOURNAL OF MATHEMATICS, 1974, 52 (02) :341-345
[38]   A geometric characterization of planar Sobolev extension domains [J].
Koskela, Pekka ;
Rajala, Tapio ;
Zhang, Yi Ru-Ya .
SCIENCE CHINA-MATHEMATICS, 2025,
[39]   A Density Problem for Sobolev Spaces on Planar Domains [J].
Koskela, Pekka ;
Zhang, Yi Ru-Ya .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (01) :1-14
[40]   A Density Problem for Sobolev Spaces on Planar Domains [J].
Pekka Koskela ;
Yi Ru-Ya Zhang .
Archive for Rational Mechanics and Analysis, 2016, 222 :1-14