Structural insights on biologically relevant cationic membranes by ESR spectroscopy

被引:14
作者
Rozenfeld J.H.K. [1 ]
Duarte E.L. [2 ]
Oliveira T.R. [3 ]
Lamy M.T. [2 ]
机构
[1] Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, 04023-062, SP
[2] Instituto de Física, Universidade de São Paulo, R. do Matão 1371, São Paulo, 05508-090, SP
[3] Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, R. Arcturus (Jd Antares), São Bernardo do Campo, SP
基金
巴西圣保罗研究基金会;
关键词
Cationic membranes; ESR spectroscopy; Lipid bilayers; Spin labels;
D O I
10.1007/s12551-017-0304-4
中图分类号
学科分类号
摘要
Cationic bilayers have been used as models to study membrane fusion, templates for polymerization and deposition of materials, carriers of nucleic acids and hydrophobic drugs, microbicidal agents and vaccine adjuvants. The versatility of these membranes depends on their structure. Electron spin resonance (ESR) spectroscopy is a powerful technique that employs hydrophobic spin labels to probe membrane structure and packing. The focus of this review is the extensive structural characterization of cationic membranes prepared with dioctadecyldimethylammonium bromide or diC14-amidine to illustrate how ESR spectroscopy can provide important structural information on bilayer thermotropic behavior, gel and fluid phases, phase coexistence, presence of bilayer interdigitation, membrane fusion and interactions with other biologically relevant molecules. © 2017, International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany.
引用
收藏
页码:633 / 647
页数:14
相关论文
共 115 条
[1]  
Ahl P.L., Perkins W.R., Interdigitation-fusion liposomes, Methods Enzymol, 367, pp. 80-98, (2003)
[2]  
Ahl P.L., Chen L., Perkins W.R., Minchey S.R., Boni L.T., Taraschi T.F., Janoff A.S., Interdigitation-fusion: a new method for producing lipid vesicles of high internal volume, Biochim Biophys Acta, 1195, 2, pp. 237-244, (1994)
[3]  
Allen T.M., Cullis P.R., Liposomal drug delivery systems: from concept to clinical applications, Adv Drug Deliv Rev, 65, 1, pp. 36-48, (2013)
[4]  
Althenbach C., The program is written in LabVIEW (National Instruments) and can be freely downloaded from the following site, (2017)
[5]  
Andersson M., Hammarstrom L., Edwards K., Effect of bilayer phase transitions on vesicle structure and its influence on the kinetics of viologen reduction, J Phys Chem, 99, pp. 14531-14538, (1995)
[6]  
Anyarambhatla G.R., Needham D., Enhancement of the phase transition permeability of DPPC Liposomes by incorporation of MPPC: a new temperature-sensitive liposome for use with mild hyperthermia, J Liposome Res, 9, 4, pp. 491-506, (1999)
[7]  
Aps L.R.M.M., Tavares M.B., Rozenfeld J.H.K., Lamy M.T., Ferreira L.C.S., Diniz M.O., Bacterial spores as particulate carriers for gene gun delivery of plasmid DNA, J Biotechnol, 228, pp. 58-66, (2016)
[8]  
Bach D., Wachtel E., Phospholipid/cholesterol model membranes: formation of cholesterol crystallites, Biochim Biophys Acta, 1610, 2, pp. 187-197, (2003)
[9]  
Barwicz J., Tancrede P., The effect of aggregation state of amphotericin-B on its interactions with cholesterol- or ergosterol-containing phosphatidylcholine monolayers, Chem Phys Lipids, 85, 2, pp. 145-155, (1997)
[10]  
Barwicz J., Christian S., Gruda I., Effects of aggregation state of amphotericin B on its toxicity to mice, Antimicrob Agents Chemother, 36, 10, pp. 2310-2315, (1992)