We consider the standard symmetric elliptic integral RF(x,y,z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_F(x,y,z)$$\end{document} for complex x, y, z. We derive convergent expansions of RF(x,y,z)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_F(x,y,z)$$\end{document} in terms of elementary functions that hold uniformly for one of the three variables x, y or z in closed subsets (possibly unbounded) of C\(-∞,0]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbb {C}{\setminus }(-\infty ,0]$$\end{document}. The expansions are accompanied by error bounds. The accuracy of the expansions and their uniform features are illustrated by means of some numerical examples.