Uniqueness of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 and 3 pure supergravities in 4D

被引:0
作者
Nicolas Boulanger
Bernard Julia
Lucas Traina
机构
[1] University of Mons - UMONS,Group of Mechanics and Gravitation, Physique théorique et mathématique
[2] LPT-ENS,undefined
[3] PSL and CNRS,undefined
关键词
Extended Supersymmetry; Gauge Symmetry; Supergravity Models;
D O I
10.1007/JHEP04(2018)097
中图分类号
学科分类号
摘要
After proving the impossibility of consistent non-minimal coupling of a real Rarita-Schwinger gauge field to electromagnetism, we re-derive the necessity of introducing the graviton in order to couple a complex Rarita-Schwinger gauge field to electromagnetism, with or without a cosmological term, thereby obtaining N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 pure supergravity as the only possibility. These results are obtained with the BRST-BV deformation method around the flat and (A)dS backgrounds in 4 dimensions. The same method applied to nv vectors, N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} real spin-3/2 gauge fields and at most one real spinor field also requires gravity and yields N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 3 pure supergravity as well as N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 pure supergravity coupled to a vector supermultiplet, with or without cosmological terms. Independently of the matter content, we finally derive strong necessary quadratic constraints on the possible gaugings for an arbitrary number of spin-1 and spin-3/2 gauge fields, that are relevant for larger supergravities.
引用
收藏
相关论文
共 78 条
  • [1] Velo G(1969)Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential Phys. Rev. 186 1337-91
  • [2] Zwanziger D(1961) 3 Annals Phys. 13 126-116
  • [3] Johnson K(2015)2 Phys. Rev. D 92 61-undefined
  • [4] Sudarshan ECG(2015)Classical Gauged Massless Rarita-Schwinger Fields Phys. Rev. D 92 123-undefined
  • [5] Adler SL(1941)Quantized Gauged Massless Rarita-Schwinger Fields Phys. Rev. 60 27-undefined
  • [6] Adler SL(2017)On a theory of particles with half integral spin Phys. Rev. D 96 295-undefined
  • [7] Rarita W(1993)Canonical Field Anticommutators in the Extended Gauged Rarita-Schwinger Theory Phys. Lett. B 311 127-undefined
  • [8] Schwinger J(1981)Consistent couplings between fields with a gauge freedom and deformations of the master equation Phys. Lett. B 102 093-undefined
  • [9] Adler SL(1985)Gauge Algebra and Quantization Nucl. Phys. B 260 064-undefined
  • [10] Henneaux M(2001)On the Theoretical Problems in Constructing Interactions Involving Higher Spin Massless Particles Nucl. Phys. B 597 65-undefined