Convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables

被引:0
作者
Yongfeng Wu
Dingcheng Wang
机构
[1] Tongling University,Department of Mathematics and Computer Science
[2] Nanjing Audit University,Institute of Financial Engineering, School of Finance, School of Applied Mathematics
来源
Applications of Mathematics | 2012年 / 57卷
关键词
complete convergence; complete moment convergence; convergence; pair-wise NQD random variables; 60F15; 60F25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper the authors study the convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables. The results extend and improve the corresponding theorems of T.C. Hu, R. L. Taylor: On the strong law for arrays and for the bootstrap mean and variance, Int. J. Math. Math. Sci 20 (1997), 375–382.
引用
收藏
页码:463 / 476
页数:13
相关论文
共 23 条
  • [1] Adler A.(1997)A mean convergence theorem and weak law for arrays of random elements in martingale type p Banach spaces Stat. Probab. Lett. 32 167-174
  • [2] Rosalsky A.(1993)Moment conditions for almost sure convergence of weakly correlated random variables Proc. Am. Math. Soc. 119 629-635
  • [3] Volodin A.(1988)On the rate of moment complete convergence of sample sums and extremes Bull. Inst. Math. Acad. Sin. 16 177-201
  • [4] Bryc W.(1981)Multivariate negative dependence Commun. Stat., Theory Methods 10 307-337
  • [5] Smoleński W.(2007)On the limiting behavior of the maximum partial sums for arrays of rowwise NA random variables Acta Math. Sci., Ser. B, Engl. Ed. 27 283-290
  • [6] Chow Y. S.(1947)Complete convergence and the law of large numbers Proc. Natl. Acad. Sci. 33 25-31
  • [7] Ebrahimi N.(1997)On the strong law for arrays and for the bootstrap mean and variance Int. J. Math. Math. Sci. 20 375-382
  • [8] Ghosh M.(1983)Negative association of random variables with applications Ann. Stat. 11 286-295
  • [9] Gan S.X.(1966)Some concepts of dependence Ann. Math. Stat. 37 1137-1153
  • [10] Chen P.Y.(2006)Moment complete convergence for sums of a sequence of NA random variables Appl. Math., Ser. A (Chin. Ed.) 21 445-450