Global Error Estimation and Extrapolated Multistep Methods For Index 1 Differential-Algebraic Systems

被引:0
|
作者
G. Yu. Kulikov
S. K. Shindin
机构
[1] University of the Witwatersrand,School of Computational and Applied Mathematics
来源
BIT Numerical Mathematics | 2005年 / 45卷
关键词
differential-algebraic systems; multistep methods; local and global error computation; extrapolation technique; higher derivatives evaluation;
D O I
暂无
中图分类号
学科分类号
摘要
In recent papers the technique for a local and global error estimation and the local-global step size control were presented to solve both ordinary differential equations and semi-explicit index 1 differential-algebraic systems by multistep methods with any reasonable accuracy attained automatically. Now those results are extended to the concept of multistep extrapolation, and the paper demonstrates with numerical examples how such methods work in practice. Especially, we develop an efficient technique to calculate higher derivatives of a numerical solution with Hermite interpolating polynomials. The necessary theory is also provided.
引用
收藏
页码:517 / 542
页数:25
相关论文
共 50 条
  • [1] Global error estimation and extrapolated multistep methods for index 1 differential-algebraic systems
    Kulikov, GY
    Shindin, SK
    BIT NUMERICAL MATHEMATICS, 2005, 45 (03) : 517 - 542
  • [2] Global optimization for the parameter estimation of differential-algebraic systems
    Esposito, WR
    Floudas, CA
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2000, 39 (05) : 1291 - 1310
  • [3] Global optimization for parameter estimation of differential-algebraic systems
    Cizniar, Michal
    Podmajersky, Marian
    Hirmajer, Tomas
    Fikar, Miroslav
    Latifi, Abderrazak M.
    CHEMICAL PAPERS, 2009, 63 (03) : 274 - 283
  • [4] Global optimization for parameter estimation of differential-algebraic systems
    Michal Čižniar
    Marián Podmajerský
    Tomáš Hirmajer
    Miroslav Fikar
    Abderrazak M. Latifi
    Chemical Papers, 2009, 63 : 274 - 283
  • [5] A local-global stepsize control for multistep methods applied to semi-explicit index 1 differential-algebraic equations
    G. Yu. Kulikov
    S. K. Shindin
    Korean Journal of Computational & Applied Mathematics, 1999, 6 (3) : 463 - 492
  • [6] A local-global stepsize control for multistep methods applied to semi-explicit index 1 differential-algebraic equations
    Kulikov, G.Yu.
    Shindin, S.K.
    Journal of Applied Mathematics and Computing, 1999, 6 (03): : 463 - 492
  • [7] Comments on "Global optimization for the parameter estimation of differential-algebraic systems"
    Luus, R
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (01) : 488 - 489
  • [8] ON NOETHERIAN INDEX OF DIFFERENTIAL-ALGEBRAIC SYSTEMS .1.
    CHISTYAKOV, VF
    SIBERIAN MATHEMATICAL JOURNAL, 1993, 34 (03) : 583 - 592
  • [9] Semi-Lagrangian multistep exponential integrators for index 2 differential-algebraic systems
    Celledoni, Elena
    Kometa, Bawfeh Kingsley
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (09) : 3413 - 3429
  • [10] Error analysis of one-leg methods for differential-algebraic equations of index
    Department of Mathematics, Inst. for Compl. and Appl. Math., Xiangtan University, Xiangtan 411105, China
    Comm. Nonlinear Sci. Numer. Simul., 3 (230-233):