ETA-HP: an energy and temperature-aware real-time scheduler for heterogeneous platforms

被引:0
作者
Yanshul Sharma
Shounak Chakraborty
Sanjay Moulik
机构
[1] Indian Institute of Information Technology (IIIT),Department of Computer Science and Engineering
[2] Norwegian University of Science and Technology (NTNU),Department of Computer Science (IDI)
来源
The Journal of Supercomputing | 2022年 / 78卷
关键词
Real-time; Heterogeneous platform; DVFS; Temperature; Energy;
D O I
暂无
中图分类号
学科分类号
摘要
Modern real-time systems are based on heterogeneous multicore platforms, which help them productively meet the applications’ diverse and high computational requirements. Managing the energy and temperature of these computational platforms has become a topic of inconceivable enthusiasm for researchers and specialists over recent years. This paper presents a heuristic technique, named ETA-HP, for energy and temperature efficient scheduling of a set of real-time periodic tasks on a DVFS empowered heterogeneous multicore system. The proposed strategy operates in four stages, namely Deadline Partitioning, Task-to-Core Allocation, Temperature-Aware Scheduling, and Energy-Aware Scheduling. Our empirical analysis shows that with a variation in system workload from 50%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50\%$$\end{document} to 100%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$100\%$$\end{document}, ETA-HP can schedule more tasks (2.52%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.52\%$$\end{document} on an average) compared to the state of the art while achieving 7.29%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.29\%$$\end{document} average energy savings with 9.59∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$9.59^{\circ }\hbox {C}$$\end{document} reduction in the average temperature of our considered heterogeneous chip-multiprocessor consisting 4 in-order and 4 out-of-order cores.
引用
收藏
页码:1 / 25
页数:24
相关论文
共 51 条
  • [1] Hoogeveen JA(1994)Complexity of scheduling multiprocessor tasks with prespecified processor allocations Discret Appl Math 55 259-272
  • [2] van de Velde SL(2018)Energy aware frame based fair scheduling Sustain Comp: Inform Syst 18 66-77
  • [3] Veltman B(2002)Thermal management of microelectronic equipment : heat transfer theory, analysis methods and design practices American Soc Mech Eng. 56 B46-B48
  • [4] Moulik S(2020)HEARS: a heterogeneous energy-aware real-time scheduler Microproc Microsyst 72 102939-25
  • [5] Sarkar A(2019)Energy-efficient quantum-inspired stochastic Q-HypE algorithm for batch-of-stochastic-tasks on heterogeneous DVFS-enabled processors Concurr Comp: Pract Exper 31 5327-1282
  • [6] Kapoor HK(2019)Thermal-aware scheduling for integrated CPUs-GPU platforms ACM Trans Embed Comput Syst 18 1-130
  • [7] Yeh L-TL-T(2016)Thermal-aware task scheduling for energy minimization in heterogeneous real-time MPSoC systems IEEE Trans Comput Aided Des Integr Circuits Syst 35 1269-26
  • [8] Moulik S(2018)Minimizing energy by thermal-aware task assignment and speed scaling in heterogeneous MPSoC systems J Syst Arch 89 118-1415
  • [9] Chaudhary R(2016)Necessary and sufficient conditions for thermal schedulability of periodic real-time tasks under fluid scheduling model ACM Trans. Embed. Comput. Syst. 15 1-17022
  • [10] Das Z(2019)Predictive thermal management for energy-efficient execution of concurrent applications on heterogeneous multicores IEEE Trans Very Large Scale Int Syst 27 1404-7