Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys

被引:0
|
作者
Xi-cong Ye
Tong Wang
Zhang-yang Xu
Chang Liu
Hai-hua Wu
Guang-wei Zhao
Dong Fang
机构
[1] China Three Gorges University,Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance
来源
International Journal of Minerals, Metallurgy and Materials | 2020年 / 27卷
关键词
high-entropy alloys; microstructure; compression performance; Vickers hardness;
D O I
暂无
中图分类号
学科分类号
摘要
We prepared (CuCoFeNi)Tix (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) high-entropy alloys (HEAs) by vacuum arc melting and then investigated the effects of Ti on their microstructure and mechanical properties. When x was inreased to 0.6, the structure of the alloy transformed from their initial single face-centered cubic (fcc) structure into fcc+Laves mixed structure. The Laves phase was found to comprise Fe2Ti and be mainly distributed in the dendrite region. With increasing Ti content, both the Laves phase and the hardness of the alloy increased, whereas its yield and fracture strengths first increased and then decreased, reaching their highest value when x was 0.8. The (CuCoFeNi)Ti0.8 alloy exhibited the best overall mechanical properties, with yield and fracture strengths of 949.7 and 1723.4 MPa, respectively, a fracture strain of 27.92%, and a hardness of HV 461.6.
引用
收藏
页码:1326 / 1331
页数:5
相关论文
共 50 条
  • [41] Effect of Al content on microstructure and mechanical properties of as-cast AlxFeMnNiCrCu0.5 high-entropy alloys
    Thanhung Nguyen
    Huang, Ming
    Li, Hongjun
    Hong, Lin
    Yang, Sen
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 832
  • [42] Impact of Ti Doping on the Microstructure and Mechanical Properties of CoCrFeMoNi High-Entropy Alloy
    Brito-Garcia, Santiago Jose
    Mirza-Rosca, Julia Claudia
    Jimenez-Marcos, Cristina
    Voiculescu, Ionelia
    METALS, 2023, 13 (05)
  • [43] Strengthening by Ti, Nb, and Zr doping on microstructure, mechanical, tribological, and corrosion properties of CoCrFeNi high-entropy alloys
    Zhou, Jia-li
    Cheng, Yan-hai
    Wan, Yi-xing
    Chen, Hao
    Wang, Yun-fei
    Yang, Jin-yong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 984
  • [44] Effect of Cr on Microstructure and Properties of a Series of AlTiCrxFeCoNiCu High-Entropy Alloys
    Anmin Li
    Ding Ma
    Qifeng Zheng
    Journal of Materials Engineering and Performance, 2014, 23 : 1197 - 1203
  • [45] Effect of Al content on microstructure and mechanical properties of the (FeCoN iV)100- xAlx high-entropy alloys
    Ye, Zhenhua
    Li, Chuanwei
    Zhang, Xinyu
    Liao, Yu
    Wang, Yiwei
    Shu, Nan
    Gu, Jianfeng
    MATERIALS CHARACTERIZATION, 2024, 216
  • [46] Microstructure Evolution and Mechanical Properties of Refractory Mo-Nb-V-W-Ti High-Entropy Alloys
    Regenberg, Maximilian
    Hasemann, Georg
    Wilke, Markus
    Halle, Thorsten
    Krueger, Manja
    METALS, 2020, 10 (11) : 1 - 13
  • [47] Effect of Fe content on microstructure and mechanical properties of Al0.5CoCrFexNiTi0.5 high-entropy alloys
    Lee, Che-Fu
    Shun, Tao-Tsung
    MATERIALS CHARACTERIZATION, 2016, 114 : 179 - 184
  • [48] Effect of Mn content on microstructure and properties of AlCrCuFeMnx high-entropy alloy
    Wang, Ning
    Ma, Kai
    Li, Qiu-da
    Yuan, Yu-dong
    Zhao, Yan-chun
    Feng, Li
    CHINA FOUNDRY, 2024, 21 (02) : 147 - 158
  • [49] Effect of Mn content on microstructure and properties of AlCrCuFeMnx high-entropy alloy
    Ning Wang
    Kai Ma
    Qiu-da Li
    Yu-dong Yuan
    Yan-chun Zhao
    Li Feng
    China Foundry, 2024, 21 : 147 - 158
  • [50] Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy
    Chen, Hu
    Chen, Wei
    Liu, Xiaoqiang
    Tang, Qunhua
    Xie, Yanchong
    Dai, Pinqiang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 719 : 192 - 198