Convergence Analysis of a Power Penalty Approach for a Class of Nonlocal Double Phase Complementarity Systems

被引:0
作者
Yongjian Liu
Shengda Zeng
Leszek Gasiński
Yun-Ho Kim
机构
[1] Yulin Normal University,Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing
[2] Nanjing University,Department of Mathematics
[3] Pedagogical University of Cracow,Department of Mathematics
[4] Sangmyung University,Department of Mathematics Education
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Complementarity system; Double phase operator; Nonlocal operator; Power penalty method; Nonlinear convection; Kuratowski limit; Convergence; 35J20; 35J25; 35R35; 35J60; 35A23;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we consider a nonlinear complementarity problem (NCP, for short) with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a convection term (i.e., a reaction depending on the gradient), a generalized multivalued boundary condition, and two nonlocal terms which appear in the domain and on the boundary. We employ a power penalty method to NCP for introducing an approximating problem associated with NCP which is a nonlinear and nonlocal elliptic equation with mixed boundary value conditions. Denoting by S∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_\infty $$\end{document} the solution set of NCP and by Sρ(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_\rho (\varepsilon )$$\end{document} the solution set of the approximating problem corresponding to penalty parameter ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document} and regularized parameter ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}, we establish a critical convergence result in which S∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_\infty $$\end{document} can be approached by the solution sets Sρ(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_\rho (\varepsilon )$$\end{document} of approximating problems in the sense of Kuratowski when ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} goes to zero, i.e., the following convergence relation holds ∅≠w-lim supρ→0Sρ(ε)=s-lim supρ→0Sρ(ε)⊂S∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\emptyset \ne w\text {-}\limsup \nolimits _{\rho \rightarrow 0}{\mathcal S}_\rho (\varepsilon )=s\text {-}\limsup \nolimits _{\rho \rightarrow 0}{\mathcal S}_\rho (\varepsilon )\subset {\mathcal {S}}_\infty ,$$\end{document} where w-lim supρ→0Sρ(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{\rho \rightarrow 0}{\mathcal {S}}_\rho (\varepsilon )$$\end{document} and s-lim supρ→0Sρ(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{\rho \rightarrow 0}{\mathcal {S}}_\rho (\varepsilon )$$\end{document} are the weak and the strong Kuratowski upper limits of Sρ(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal S_\rho (\varepsilon )$$\end{document}, respectively.
引用
收藏
相关论文
共 72 条
  • [21] Mingione G(2020)Double phase Dirichlet problems with unilateral constraints B. Lond. Math. Soc. 52 546-203
  • [22] Crespo-Blanco Á(2022)Regularity for minimizers for functionals of double phase with variable exponents Math. Ann. 59 176-710
  • [23] Gasiński L(2020)Double-phase problems and a discontinuity property of the spectrum Calc. Var. Partial Differ. Equ. 10 659-269
  • [24] Harjulehto P(2021)Existence and multiplicity of solutions for double-phase Robin problems Adv. Nonlinear Anal. 54 1898-570
  • [25] Winkert P(2022)Non-autonomous SIAM J. Math. Anal. 188 159-undefined
  • [26] Farkas C(2018)-equations with unbalanced growth J. Math. Pures Appl. 50 675-undefined
  • [27] Winkert P(1986)Existence results for double phase implicit obstacle problems involving multivalued operators Izv. Akad. Nauk SSSR Ser. Mat. 3 249-undefined
  • [28] Gasiński L(1995)Convergence analysis for double phase obstacle problems with multivalued convection term Russ. J. Math. Phys. 173 463-undefined
  • [29] Winkert P(2011)Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions J. Math. Sci. undefined undefined-undefined
  • [30] Gasiński L(undefined)Double phase anisotropic variational problems and combined effects of reaction and absorption terms undefined undefined undefined-undefined