Convergence Analysis of a Power Penalty Approach for a Class of Nonlocal Double Phase Complementarity Systems

被引:0
作者
Yongjian Liu
Shengda Zeng
Leszek Gasiński
Yun-Ho Kim
机构
[1] Yulin Normal University,Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing
[2] Nanjing University,Department of Mathematics
[3] Pedagogical University of Cracow,Department of Mathematics
[4] Sangmyung University,Department of Mathematics Education
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Complementarity system; Double phase operator; Nonlocal operator; Power penalty method; Nonlinear convection; Kuratowski limit; Convergence; 35J20; 35J25; 35R35; 35J60; 35A23;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we consider a nonlinear complementarity problem (NCP, for short) with a nonlinear and nonhomogeneous partial differential operator (called double phase differential operator), a convection term (i.e., a reaction depending on the gradient), a generalized multivalued boundary condition, and two nonlocal terms which appear in the domain and on the boundary. We employ a power penalty method to NCP for introducing an approximating problem associated with NCP which is a nonlinear and nonlocal elliptic equation with mixed boundary value conditions. Denoting by S∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_\infty $$\end{document} the solution set of NCP and by Sρ(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_\rho (\varepsilon )$$\end{document} the solution set of the approximating problem corresponding to penalty parameter ρ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho >0$$\end{document} and regularized parameter ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}, we establish a critical convergence result in which S∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_\infty $$\end{document} can be approached by the solution sets Sρ(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}_\rho (\varepsilon )$$\end{document} of approximating problems in the sense of Kuratowski when ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} goes to zero, i.e., the following convergence relation holds ∅≠w-lim supρ→0Sρ(ε)=s-lim supρ→0Sρ(ε)⊂S∞,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\emptyset \ne w\text {-}\limsup \nolimits _{\rho \rightarrow 0}{\mathcal S}_\rho (\varepsilon )=s\text {-}\limsup \nolimits _{\rho \rightarrow 0}{\mathcal S}_\rho (\varepsilon )\subset {\mathcal {S}}_\infty ,$$\end{document} where w-lim supρ→0Sρ(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{\rho \rightarrow 0}{\mathcal {S}}_\rho (\varepsilon )$$\end{document} and s-lim supρ→0Sρ(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{\rho \rightarrow 0}{\mathcal {S}}_\rho (\varepsilon )$$\end{document} are the weak and the strong Kuratowski upper limits of Sρ(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal S_\rho (\varepsilon )$$\end{document}, respectively.
引用
收藏
相关论文
共 72 条
  • [1] Bahrouni A(2019)Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves Nonlinearity 32 2481-2495
  • [2] Rǎdulescu VD(2020)Double phase problems with variable growth and convection for the Baouendi–Grushin operator Z. Angew. Math. Phys. 71 183-345
  • [3] Repovš DD(2022)A singular eigenvalue problem for the Dirichlet ( Math. Z. 300 325-222
  • [4] Bahrouni A(2015), Nonlinear Anal. 121 206-1300
  • [5] Rǎdulescu VD(2018))-Laplacian Calc. Var. Partial Differ. Equ. 57 62-273
  • [6] Winkert P(2020)Harnack inequalities for double phase functionals Anal. PDE 13 1269-496
  • [7] Bai YR(2015)Regularity for general functionals with double phase Arch. Ration. Mech. Anal. 218 219-228
  • [8] Papageorgiou NS(2015)Regularity results for generalized double phase functionals Arch. Ration. Mech. Anal. 215 443-473
  • [9] Zeng SD(2022)Bounded minimisers of double phase variational integrals J. Differ. Equ. 323 182-4193
  • [10] Baroni P(2021)Regularity for double phase variational problems J. Differ. Equ. 286 455-1066