Sliding-mode H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${H_{\infty}}$\end{document} synchronization for complex dynamical network systems with Markovian jump parameters and time-varying delays

被引:0
作者
Nannan Ma
Zhibin Liu
Lin Chen
机构
[1] Southwest Petroleum University,School of Science
关键词
Complex dynamical networks; Sliding-mode control; Markovian jump parameters; performance;
D O I
10.1186/s13662-019-1987-6
中图分类号
学科分类号
摘要
This paper is devoted to the investigation of the sliding-mode controller design problem for a class of complex dynamical network systems with Markovian jump parameters and time-varying delays. On the basis of an appropriate Lyapunov–Krasovskii functional, a set of new sufficient conditions is developed which not only guarantee the stochastic stability of the sliding-mode dynamics, but also satisfy the H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${H_{\infty}}$\end{document} performance. Next, an integral sliding surface is designed to guarantee that the closed-loop error system reach the designed sliding surface in a finite time. Finally, an example is given to illustrate the validity of the obtained theoretical results.
引用
收藏
相关论文
共 125 条
  • [1] Barabasi A.L.(2000)Scale-free characteristics of random networks: the topology of the world wide web Physica A 281 69-77
  • [2] Albert R.(1988)Collective dynamics of ‘small-world’ networks Nature 393 440-442
  • [3] Jeong H.(1999)Emergence of scaling in random networks Science 286 509-512
  • [4] Watts D.J.(1999)Diameter of the world wide web Nature 401 130-131
  • [5] Strogatz S.H.(2001)Exploring complex network Nature 410 268-276
  • [6] Barbasi A.L.(2002)Synchronization in scale-free dynamical networks: robustness and fragility IEEE Trans. Circuits Syst. 149 54-56
  • [7] Albert R.(2017)Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays Neural Netw. 94 46-54
  • [8] Albert R.(2018)Stochastic finite-time synchronization for discontinuous semi-Markovian switching neural networks with time delays and noise disturbance Neurocomputing 310 246-264
  • [9] Jeong H.(2018)Global nonfragile synchronization in finite time for fractional-order discontinuous neural networks with nonlinear growth activations IEEE Trans. Neural Netw. Learn. Syst. 2018 85-99
  • [10] Barabsi A.L.(2018)Fixed-time synchronization of semi-Markovian jumping neural networks with time-varying delays Adv. Differ. Equ. 28 1429-1438