Virtual Bound Levels in a Gap of the Essential Spectrum of the Weakly Perturbed Periodic Schrödinger Operator

被引:0
作者
Leonid Zelenko
机构
[1] University of Haifa,Department of Mathematics
来源
Integral Equations and Operator Theory | 2016年 / 85卷
关键词
Schrödinger operator; Perturbed periodic potential; Coupling constant; Virtual eigenvalues; Asymptotic behavior of virtual eigenvalues; Primary 47F05; 47A75; 35P05; 35P20; 47A55; Secondary 81Q10; 81Q15;
D O I
暂无
中图分类号
学科分类号
摘要
In the space L2(Rd)(d≤3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L_{2}(\mathbf{R}^{d}) (d \le 3)}$$\end{document} we consider the Schrödinger operator Hγ=-Δ+V(x)·+γW(x)·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{\gamma}=-{\Delta}+ V(\mathbf{x})\cdot+\gamma W(\mathbf{x})\cdot}$$\end{document}, where V(x)=V(x1,x2,⋯,xd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V(\mathbf{x})=V(x_{1}, x_{2}, \dots, x_{d})}$$\end{document} is a periodic function with respect to all the variables, γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma}$$\end{document} is a small real coupling constant and the perturbation W(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${W(\mathbf{x})}$$\end{document} tends to zero sufficiently fast as |x|→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\mathbf{x}|\rightarrow\infty}$$\end{document}. We study so called virtual bound levels of the operator Hγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\gamma}$$\end{document}, i.e., those eigenvalues of Hγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_\gamma}$$\end{document} which are born at the moment γ=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma=0}$$\end{document} in a gap (λ-,λ+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\lambda_-,\,\lambda_+)}$$\end{document} of the spectrum of the unperturbed operator H0=-Δ+V(x)·\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_0=-\Delta+ V(\mathbf{x})\cdot}$$\end{document} from an edge of this gap while γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma}$$\end{document} increases or decreases. We assume that the dispersion function of H0, branching from an edge of (λ-,λ+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\lambda_-,\lambda_+)}$$\end{document}, is non-degenerate in the Morse sense at its extremal set. For a definite perturbation (W(x)≥0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(W(\mathbf{x})\ge 0)}$$\end{document} we show that if d ≤ 2, then in the gap there exist virtual eigenvalues which are born from this edge. We investigate their number and an asymptotic behavior of them and of the corresponding eigenfunctions as γ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\gamma\rightarrow 0}$$\end{document}. For an indefinite perturbation we estimate the multiplicity of virtual bound levels. In particular, we show that if d = 3 and both edges of the gap (λ-,λ+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\lambda_-,\,\lambda_+)}$$\end{document} are non-degenerate, then under additional conditions there is a threshold for the birth of the impurity spectrum in the gap, i.e., σ(Hγ)∩(λ-,λ+)=∅\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma(H_\gamma)\cap(\lambda_-,\,\lambda_+)=\emptyset}$$\end{document} for a small enough |γ|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|\gamma|}$$\end{document}.
引用
收藏
页码:307 / 345
页数:38
相关论文
共 33 条
[1]  
Arazy J.(2006)Virtual eigenvalues of the high order Schrödinger operator II Integr. Equ. Oper. Theory 55 305-345
[2]  
Zelenko L.(2006)Virtual eigenvalues of the high order Schrödinger operator I Integr. Equ. Oper. Theory 55 189-231
[3]  
Arazy J.(1999)Finite-dimensional perturbations of self-adjoint operators Integr. Equ. Oper. Theory 34 127-164
[4]  
Zelenko L.(1961)On the number of eigenvalues in a quantum scattering problem Vest. LSU 16 163-166
[5]  
Arazy J.(1986)On the existence of eigenvalues of the Schrodinger operator Commun. Math. Phys. 103 461-490
[6]  
Zelenko L.(1950) in a gap of Sov. Math. Dokl. 73 1117-1120
[7]  
Birman M.Sh.(1990)Eigenfunction expansion for a differential equation with periodic coefficients Bull. Soc. Math. Fr. 118 27-54
[8]  
Deift P.A.(1993)Resonance theory for periodic Schrödinger operators Trans. Am. Math. Soc. 335 329-340
[9]  
Hempel R.(1988)A short proof of Zheludev’s theorem Commun. Math. Phys. 116 503-505
[10]  
Gelfand I.M.(2010)On a theorem of Deift and Hempel Math. Nachr. 283 489-499