An Exterior Differential System for a Generalized Korteweg-de Vries Equation and its Associated Integrability

被引:0
作者
Paul Bracken
机构
[1] University of Texas,Department of Mathematics
来源
Acta Applicandae Mathematicae | 2007年 / 95卷
关键词
Generalized KdV equation; Exterior differential system; Cartan prolongation; Solitons; 35A30; 32A25; 35C05;
D O I
暂无
中图分类号
学科分类号
摘要
The method of Cartan is reviewed by applying it to the classical Korteweg-de Vries equation. The method is then applied to a new generalized Korteweg-de Vries equation for which a prolongation is obtained. As a consequence, a Bäcklund transformation for the equation is derived as well as the associated potential equation.
引用
收藏
页码:223 / 231
页数:8
相关论文
共 13 条
  • [1] Estabrook F.B.(1975)The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics SIAM Rev. 17 201-220
  • [2] Wahlquist H.D.(1975)Prolongation structures of nonlinear evolution equations J. Math. Phys. 16 1-7
  • [3] Wahlquist H.D.(2004)Some methods for generating solutions to the Korteweg-de Vries equation Physica A 335 70-78
  • [4] Estabrook F.B.(1993)Compactons: solitons with finite wavelength Phys. Rev. Lett. 70 564-567
  • [5] Bracken P.(1988)Intrinsic localized modes in anharmonic crystals Phys. Rev. Lett. 61 970-973
  • [6] Rosenau P.(2005)Symmetry properties of a generalized Korteweg-de Vries equation and some explicit solutions Int. J. Math. Math. Sci. 2005 2159-2173
  • [7] Hyman J.(2006)Phase compactons Physica D 218 56-69
  • [8] Sivers A.J.(2006)On a model equation of traveling and stationary compactons Phys. Lett. A 256 44-50
  • [9] Takens S.(undefined)undefined undefined undefined undefined-undefined
  • [10] Bracken P.(undefined)undefined undefined undefined undefined-undefined