Non-periodic homogenization of bending–torsion theory for inextensible rods from 3D elasticity

被引:0
作者
Maroje Marohnić
Igor Velčić
机构
[1] University of Zagreb,Department of Mathematics, Faculty of Natural Sciences and Mathematics
[2] University of Zagreb,Faculty of Electrical Engineering and Computing
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2016年 / 195卷
关键词
Elasticity; Dimensional reduction; Homogenization ; Bending rod model; 35B27; 49J45; 74E30; 74Q05;
D O I
暂无
中图分类号
学科分类号
摘要
We derive, by means of Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-convergence, the equations of homogenized bending rod starting from 3D nonlinear elasticity equations. The main assumption is that the energy behaves like h2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^2$$\end{document} (after dividing by h2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^2$$\end{document}, the order of vanishing volume), where h is the thickness of the body. We do not presuppose any kind of periodicity and work in the general framework. The result shows that, on a subsequence, we always obtain the equations of the same type as in bending–torsion rod theory and identifies, in an abstract formulation, the limiting quadratic form connected with that model. This result is the generalization of periodic homogenization of bending–torsion rod theory already present in the literature.
引用
收藏
页码:1055 / 1079
页数:24
相关论文
共 43 条
[1]  
Acerbi E(1991)A variational definition of the strain energy for an elastic string J. Elast. 25 137-148
[2]  
Buttazzo G(1992)Homogenization and two-scale convergence SIAM J. Math. Anal. 23 1482-1518
[3]  
Percivale D(2011)Homogenization in a thin domain with an oscillatory boundary J. Math. Pures Appl. 96 29-57
[4]  
Allaire G(2000)3D–2D asymptotic analysis for inhomogeneous thin films Indiana Univ. Math. J. 49 1367-1404
[5]  
Arrieta JM(2007)A note on equi-integrability in dimension reduction problems Calc. Var. Partial Differ. Equ. 29 231-238
[6]  
Pereira MC(2004)Compensated compactness for nonlinear homogenization and reduction of dimension Calc. Var. Partial Differ. Equ. 20 65-91
[7]  
Braides A(2012)Convergence of equilibria of thin elastic rods under physical growth conditions for the energy density Proc. R. Soc. Edinb. Sect. A 142 501-524
[8]  
Fonseca I(2002)A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity Comm. Pure Appl. Math. 55 1461-1506
[9]  
Francfort G(2006)A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence Arch. Ration. Mech. Anal. 180 183-236
[10]  
Braides A(1998)Analysis of concentration and oscillation effects generated by gradients SIAM J. Math. Anal. 29 736-756