Minimum ε-equivalent Circuit Size Problem

被引:0
作者
Oleg A. Prokopyev
Panos M. Pardalos
机构
[1] University of Florida,Department of Industrial and Systems Engineering
来源
Journal of Combinatorial Optimization | 2004年 / 8卷
关键词
minimum circuit size problem; approximation; Boolean circuits; inapproximability; natural properties; combinatorial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
For a Boolean function f given by its truth table (of length \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n$$\end{document}) and a parameter s the problem considered is whether there is a Boolean function g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document}-equivalent to f, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Pr_{x\in {\{0,1\}}^n}\{g(x) \ne f(x)\} \le \epsilon$$\end{document}, and computed by a circuit of size at most s. In this paper we investigate the complexity of this problem and show that for specific values of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon$$\end{document} it is unlikely to be in P/poly. Under the same assumptions we also consider the optimization variant of the problem and prove its inapproximability.
引用
收藏
页码:495 / 502
页数:7
相关论文
empty
未找到相关数据