We study the explosion of the solutions of the SDE in the quasi-Gaussian HJM model with a CEV-type volatility. The quasi-Gaussian HJM models are a popular approach for modeling the dynamics of the yield curve. This is due to their low-dimensional Markovian representation which simplifies their numerical implementation and simulation. We show rigorously that the short rate in these models explodes in finite time with positive probability, under certain assumptions for the model parameters, and that the explosion occurs in finite time with probability one under some stronger assumptions. We discuss the implications of these results for the pricing of the zero coupon bonds and Eurodollar futures under this model.
机构:
Novosibirsk State Univ, Inst Numer Math & Math Geophys, Siberian Branch, Russian Acad Sci, Novosibirsk 630090, RussiaNovosibirsk State Univ, Inst Numer Math & Math Geophys, Siberian Branch, Russian Acad Sci, Novosibirsk 630090, Russia
Ogorodnikov, V. A.
Prigarin, S. M.
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State Univ, Inst Numer Math & Math Geophys, Siberian Branch, Russian Acad Sci, Novosibirsk 630090, RussiaNovosibirsk State Univ, Inst Numer Math & Math Geophys, Siberian Branch, Russian Acad Sci, Novosibirsk 630090, Russia
Prigarin, S. M.
Rodionov, A. S.
论文数: 0引用数: 0
h-index: 0
机构:
Novosibirsk State Univ, Inst Numer Math & Math Geophys, Siberian Branch, Russian Acad Sci, Novosibirsk 630090, RussiaNovosibirsk State Univ, Inst Numer Math & Math Geophys, Siberian Branch, Russian Acad Sci, Novosibirsk 630090, Russia