On the Use of Low-Pass Filters for Image Processing with Inverse Laplacian Models

被引:0
作者
Rehan Ali
Tunde Szilagyi
Mark Gooding
Martin Christlieb
Michael Brady
机构
[1] Stanford University,Department of Radiation Physics
[2] University of Oxford,FRS FREng FMedSci Wolfson Medical Vision Lab, Department of Engineering Science
[3] Innovation House,Mirada Medical Ltd
[4] University of Oxford,Gray Institute for Radiation Oncology and Biology
来源
Journal of Mathematical Imaging and Vision | 2012年 / 43卷
关键词
Inverse Laplacian; Monogenic signal; Transport of intensity; Low-pass filters; Microscopy image analysis;
D O I
暂无
中图分类号
学科分类号
摘要
A novel signal processing-oriented approach to solving problems involving inverse Laplacians is introduced. The Monogenic Signal is a powerful method of computing the phase of discrete signals in image data, however it is typically used with band-pass filters in the capacity of a feature detector. Substituting low-pass filters allows the Monogenic Signal to produce approximate solutions to the inverse Laplacian, with the added benefit of tunability and the generation of three equivariant properties (namely local energy, local phase and local orientation), which allow the development of powerful numerical solutions for a new set of problems. These principles are applied here in the context of biological cell segmentation from brightfield microscopy image data. The Monogenic Signal approach is used to generate reduced noise solutions to the Transport of Intensity Equation for optical phase recovery, and the resulting local phase and local orientation terms are combined in an iterative level set approach to accurately segment cell boundaries. Potential applications of this approach are discussed with respect to other fields.
引用
收藏
页码:156 / 165
页数:9
相关论文
共 45 条
  • [1] Barbero S.(2006)Error analysis and correction in wavefront reconstruction from the transport-of-intensity equation Opt. Eng. 45 1-6
  • [2] Thibos L.(2002)Quantitative phase-amplitude microscopy I. Optical microscopy J. Microsc. 206 194-203
  • [3] Barone-Nugent E.(2004)On the transport of intensity technique for phase retrieval Ultramicroscopy 102 37-49
  • [4] Barty A.(2004)On the choice of Band-Pass quadrature filters J. Math. Imaging Vis. 21 53-80
  • [5] Nugent K.(2001)Active contours without edges IEEE Trans. Image Process. 10 266-277
  • [6] Bellegia M.(2004)Quantitative phase microscopy: a new tool for measurement of cell culture growth and confluency in situ Eur. J. Physiol. 448 462-468
  • [7] Schofield M.(2001)The monogenic signal IEEE Trans. Signal Process. 49 3136-3144
  • [8] Volkov V.(1982)Phase retrieval algorithms: a comparison Appl. Opt. 21 2758-2769
  • [9] Zhu Z.(2005)Phase measurement of atomic resolution image using transport of intensity equation J. Elect. Microscopy 54 191-197
  • [10] Boukerroui D.(2005)Phase mutual information as a similarity measure for registration Med. Image Anal. 9 330-43