Prediction and experimental validation approach to improve performance of novel hybrid bio-inspired 3D printed lattice structures using artificial neural networks

被引:0
|
作者
Ramakrishna Doodi
Bala Murali Gunji
机构
[1] Vellore Institute of Technology,School of Mechanical Engineering
来源
Scientific Reports | / 13卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Novel Cellular lattice structures with lightweight designs are gaining more interest in the automobile and aerospace sectors. Additive manufacturing technologies have focused on designing and manufacturing cellular structures in recent years, increasing the versatility of these structures because of the significant benefits like high strength-to-weight ratio. In this research, a novel hybrid type of cellular lattice structure is designed, bio-inspired from the circular patterns seen in the bamboo tree structure and the overlapping patterns found on the dermal layers of fish-like species. The unit lattice cell with varied overlapping areas with a unit cell wall thickness of 0.4 to 0.6 mm. Fusion 360 software models the lattice structures with a constant volume of 40 × 40 × 40 mm. Utilizing the stereolithography (SLA) process and a vat polymerization type three-dimensional printing equipment is used to fabricate the 3D printed specimens. A quasi-static compression test was carried out on all 3D printed specimens, and the energy absorption capacity of each structure was calculated. Machine learning technique like the Artificial neural network (ANN) with Levenberg–Marquardt Algorithm (ANN-LM) was applied to the present research to predict the energy absorption of the lattice structure with parameters such as overlapping area, wall thickness, and size of the unit cell. The k-fold cross-validation technique was applied in the training phase to get the best training results. Overall, the results obtained using the ANN tool are validated and can be a favourable tool for lattice energy prediction with available data.
引用
收藏
相关论文
共 50 条
  • [1] Prediction and experimental validation approach to improve performance of novel hybrid bio-inspired 3D printed lattice structures using artificial neural networks
    Doodi, Ramakrishna
    Gunji, Bala Murali
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] An experimental and numerical investigation on the performance of novel hybrid bio-inspired 3D printed lattice structures for stiffness and energy absorption applications
    Doodi, Ramakrishna
    Gunji, Bala Murali
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (17) : 3970 - 3979
  • [3] Dynamic Response of 3D Printed Bio-Inspired Lightweight Structures
    Siddique, Shakib Hyder
    Hazell, Paul J.
    Pereira, Gerald G.
    Wang, Hongxu
    Escobedo, Juan P.
    DYNAMIC RESPONSE AND FAILURE OF COMPOSITE MATERIALS, DRAF 2024, 2025, : 312 - 322
  • [4] Computational and experimental investigation of bio-inspired 3D printed prototypes
    Lozano, Christine M.
    Riveros, Guillermo A.
    Patel, Reena R.
    Wedgeworth, Dane N.
    McClelland, Zackery B.
    Goss, Robert C.
    Perkins, Edward
    BIOINSPIRATION, BIOMIMETICS, AND BIOREPLICATION X, 2020, 11374
  • [5] Impact energy absorption in 3D printed bio-inspired PLA structures
    Kazantseva, N. V.
    Onishchenko, A. O.
    Zelepugin, S. A.
    Cherepanov, R. O.
    Ivanova, O. V.
    POLYMER, 2025, 316
  • [6] Flexural behavior of 3D printed bio-inspired interlocking suture structures
    Wickramasinghe, Sachini
    Do, Truong
    Tran, Phuong
    MATERIALS SCIENCE IN ADDITIVE MANUFACTURING, 2022, 1 (02):
  • [7] Analysing fracture properties of bio-inspired 3D printed suture structures
    Wickramasinghe, Sachini
    Peng, Chenxi
    Ladani, Raj
    Tran, Phuong
    THIN-WALLED STRUCTURES, 2022, 176
  • [8] Experimental and numerical investigation of 3D printed bio-inspired lattice structures for mechanical behaviour under Quasi static loading conditions
    Chouhan, Ganesh
    Gunji, Bala Murali
    Bidare, Prveen
    Ramakrishna, Doodi
    Kumar, Ranjeet
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [9] Bio-inspired 3D-printed lattice structures for energy absorption applications: A review
    Ramakrishna, Doodi
    Murali, Gunji Bala
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2023, 237 (03) : 503 - 542
  • [10] Axial crushing response of novel toothed gear bio-inspired 3D printed energy absorbing structures
    Isaac, Chukwuemeke William
    Duddeck, Fabian
    San Ha, Ngoc
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2025, 288